Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 13(1): 54-60, 2019 Jan 22.
Article in English | MEDLINE | ID: mdl-30452230

ABSTRACT

A well-defined insulating layer is of primary importance in the fabrication of passive ( e.g., capacitors) and active ( e.g., transistors) components in integrated circuits. One of the most widely known two-dimensional (2D) dielectric materials is hexagonal boron nitride (hBN). Solution-based techniques are cost-effective and allow simple methods to be used for device fabrication. In particular, inkjet printing is a low-cost, noncontact approach, which also allows for device design flexibility, produces no material wastage, and offers compatibility with almost any surface of interest, including flexible substrates. In this work, we use water-based and biocompatible graphene and hBN inks to fabricate all-2D material and inkjet-printed capacitors. We demonstrate an areal capacitance of 2.0 ± 0.3 nF cm-2 for a dielectric thickness of ∼3 µm and negligible leakage currents, averaged across more than 100 devices. This gives rise to a derived dielectric constant of 6.1 ± 1.7. The inkjet printed hBN dielectric has a breakdown field of 1.9 ± 0.3 MV cm-1. Fully printed capacitors with sub-micrometer hBN layer thicknesses have also been demonstrated. The capacitors are then exploited in two fully printed demonstrators: a resistor-capacitor (RC) low-pass filter and a graphene-based field effect transistor.

2.
Phys Chem Chem Phys ; 19(26): 17036-17043, 2017 Jul 14.
Article in English | MEDLINE | ID: mdl-28642943

ABSTRACT

The addition of amines to an aldehyde surfactant, which was designed to be analogous to didodecyldimethylammonium bromide, gave exchangeable "iminolipids" that self-assembled to give stable aqueous dispersions of nano-sized vesicles. For example, sonication of suspensions of the n-hexylamine-derived iminolipid gave vesicles 50 to 200 nm in diameter that could encapsulate a water-soluble dye. The iminolipids could undergo dynamic exchange with added amines, and the resulting equilibrium constants (Krel) were quantified by 1H NMR spectroscopy. In the absence of lipid self-assembly, in CDCl3, the assayed primary amines gave very similar Krel values. However in D2O the value of Krel generally increased with increasing amine hydrophobicity, consistent with partitioning into a self-assembled bilayer. Amines with aromatic groups showed significantly higher values of Krel in D2O compared to similarly hydrophobic alkylamines, suggesting that π-π interactions favor lipid self-assembly. Given this synergistic relationship, π-rich pyrenyliminolipids were created and used to exfoliate graphite, leading to aqueous dispersions of graphene flakes that were stable over several months.

3.
Nat Nanotechnol ; 12(4): 343-350, 2017 05.
Article in English | MEDLINE | ID: mdl-28135260

ABSTRACT

Exploiting the properties of two-dimensional crystals requires a mass production method able to produce heterostructures of arbitrary complexity on any substrate. Solution processing of graphene allows simple and low-cost techniques such as inkjet printing to be used for device fabrication. However, the available printable formulations are still far from ideal as they are either based on toxic solvents, have low concentration, or require time-consuming and expensive processing. In addition, none is suitable for thin-film heterostructure fabrication due to the re-mixing of different two-dimensional crystals leading to uncontrolled interfaces and poor device performance. Here, we show a general approach to achieve inkjet-printable, water-based, two-dimensional crystal formulations, which also provide optimal film formation for multi-stack fabrication. We show examples of all-inkjet-printed heterostructures, such as large-area arrays of photosensors on plastic and paper and programmable logic memory devices. Finally, in vitro dose-escalation cytotoxicity assays confirm the biocompatibility of the inks, extending their possible use to biomedical applications.


Subject(s)
Biocompatible Materials/chemistry , Ink , Materials Testing , Printing , A549 Cells , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...