Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Transfusion ; 61(5): 1440-1446, 2021 05.
Article in English | MEDLINE | ID: mdl-33734448

ABSTRACT

BACKGROUND: Convalescent plasma products are a potential passive immunotherapy for Coronavirus disease 2019 (COVID-19) disease. Various approaches have been utilized to determine the concentration of Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-neutralizing antibodies in plasma products. The Canadian Blood Services used Plaque Reduction Neutralization Test 50 (PRNT50) -generated values to qualify convalescent plasma donations supporting clinical trials in Canada. This manuscript describes changes in PRNT50 titers of repeat male plasma donations collected approximately 1-4 months after onset of COVID-19 signs and symptoms in donors. STUDY DESIGN AND METHODS: Men were eligible to donate if they: met standard criteria, were < 67 years of age, reported a previous SARS-CoV-2-positive nucleic acid test, and recovered and were symptom free for at least 28 days prior to donation. Repeat donation analysis required at least one original and one repeat donation where a PRNT50 was performed. RESULTS: From April 29, 2020 to July 25, 2020, 156 donors donated once, with 78 (50%) of the donated plasma having PRNT50 titers of ≥1:160. Thirty-seven (23.7%) of the donated plasma had a titer of 1:40 or 1:80 (individuals donating this plasma were asked to donate a second time only). A total of 30 donors (19.2%) had repeat donations. Of the repeat donors, 15 (50%) had at least an eightfold change from peak to trough PRNT50 titers within greater than 90 days after onset of COVID-19 symptoms. CONCLUSIONS: Blood operators cannot infer that SARS-CoV-2 PRNT50 will remain high in repeat plasma donors 3-4 months after onset of COVID-19 symptoms.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Blood Donors , COVID-19/blood , COVID-19/therapy , Convalescence , SARS-CoV-2/metabolism , Adult , Canada , Humans , Immunization, Passive , Male , Middle Aged , COVID-19 Serotherapy
2.
Clin Chem ; 66(8): 1063-1071, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32705124

ABSTRACT

BACKGROUND: HEARTBiT is a whole blood-based gene profiling assay using the nucleic acid counting NanoString technology for the exclusionary diagnosis of acute cellular rejection in heart transplant patients. The HEARTBiT score measures the risk of acute cellular rejection in the first year following heart transplant, distinguishing patients with stable grafts from those at risk for acute cellular rejection. Here, we provide the analytical performance characteristics of the HEARTBiT assay and the results on pilot clinical validation. METHODS: We used purified RNA collected from PAXgene blood samples to evaluate the characteristics of a 12-gene panel HEARTBiT assay, for its linearity range, quantitative bias, precision, and reproducibility. These parameters were estimated either from serial dilutions of individual samples or from repeated runs on pooled samples. RESULTS: We found that all 12 genes showed linear behavior within the recommended assay input range of 125 ng to 500 ng of purified RNA, with most genes showing 3% or lower quantitative bias and around 5% coefficient of variation. Total variation resulting from unique operators, reagent lots, and runs was less than 0.02 units standard deviation (SD). The performance of the analytically validated assay (AUC = 0.75) was equivalent to what we observed in the signature development dataset. CONCLUSION: The analytical performance of the assay within the specification input range demonstrated reliable quantification of the HEARTBiT score within 0.02 SD units, measured on a 0 to 1 unit scale. This assay may therefore be of high utility in clinical validation of HEARTBiT in future biomarker observational trials.


Subject(s)
Gene Expression Profiling/methods , Graft Rejection/diagnosis , Heart Transplantation/adverse effects , RNA/blood , Adult , Biomarkers/blood , Female , Humans , Limit of Detection , Male , Middle Aged , Pilot Projects , Prognosis , Reproducibility of Results
3.
Can J Cardiol ; 36(8): 1217-1227, 2020 08.
Article in English | MEDLINE | ID: mdl-32553820

ABSTRACT

BACKGROUND: Nine mRNA transcripts associated with acute cellular rejection (ACR) in previous microarray studies were ported to the clinically amenable NanoString nCounter platform. Here we report the diagnostic performance of the resulting blood test to exclude ACR in heart allograft recipients: HEARTBiT. METHODS: Blood samples for transcriptomic profiling were collected during routine post-transplantation monitoring in 8 Canadian transplant centres participating in the Biomarkers in Transplantation initiative, a large (n = 1622) prospective observational study conducted between 2009 and 2014. All adult cardiac transplant patients were invited to participate (median age = 56 [17 to 71]). The reference standard for rejection status was histopathology grading of tissue from endomyocardial biopsy (EMB). All locally graded ISHLT ≥ 2R rejection samples were selected for analysis (n = 36). ISHLT 1R (n = 38) and 0R (n = 86) samples were randomly selected to create a cohort approximately matched for site, age, sex, and days post-transplantation, with a focus on early time points (median days post-transplant = 42 [7 to 506]). RESULTS: ISHLT ≥ 2R rejection was confirmed by EMB in 18 and excluded in 92 samples in the test set. HEARTBiT achieved 47% specificity (95% confidence interval [CI], 36%-57%) given ≥ 90% sensitivity, with a corresponding area under the receiver operating characteristic curve of 0.69 (95% CI, 0.56-0.81). CONCLUSIONS: HEARTBiT's diagnostic performance compares favourably to the only currently approved minimally invasive diagnostic test to rule out ACR, AlloMap (CareDx, Brisbane, CA) and may be used to inform care decisions in the first 2 months post-transplantation, when AlloMap is not approved, and most ACR episodes occur.


Subject(s)
Graft Rejection/genetics , Heart Transplantation , Myocardium/pathology , RNA, Messenger/genetics , Transcriptome/genetics , Acute Disease , Allografts , Biopsy , Female , Humans , Male , Middle Aged , Prospective Studies , ROC Curve
4.
Can J Cardiol ; 35(4): 471-479, 2019 04.
Article in English | MEDLINE | ID: mdl-30935638

ABSTRACT

BACKGROUND: Many risk models for predicting mortality, hospitalizations, or both in patients with heart failure have been developed but do not have sufficient discriminatory ability. The purpose of this study was to identify predictive biomarkers of hospitalizations in heart failure patients using omics-based technologies applied to blood and electrical monitoring of the heart. METHODS: Blood samples were collected from 58 heart failure patients during enrollment into this study. Each patient wore a 48-hour Holter monitor that recorded the electrical activity of their heart. The blood samples were profiled for gene expression using microarrays and protein levels using multiple reaction monitoring. Statistical deconvolution was used to estimate cellular frequencies of common blood cells. Classification models were developed using clinical variables, Holter variables, cell types, gene transcripts, and proteins to predict hospitalization status. RESULTS: Of the 58 patients recruited, 13 were hospitalized within 3 months after enrollment. These patients had lower diastolic and systolic blood pressures, higher brain natriuretic peptide levels, most had higher blood creatinine levels, and had been diagnosed with heart failure for a longer time period. The best-performing clinical model had an area under the receiver operating characteristic curve of 0.76. An ensemble biomarker panel consisting of Holter variables, cell types, gene transcripts, and proteins had an area under the receiver operating characteristic curve of 0.88. CONCLUSIONS: Molecular-based analyses as well as sensory data might provide sensitive biomarkers for the prediction of hospitalizations in heart failure patients. These approaches may be combined with traditional clinical models for the development of improved risk prediction models for heart failure.


Subject(s)
Heart Failure/epidemiology , Hospitalization , Proteogenomics/methods , Aged , Biomarkers , Blood Pressure , Creatinine/blood , Electrocardiography, Ambulatory , Female , Gene Expression Profiling , Humans , Male , Middle Aged , Natriuretic Peptide, Brain/blood , Pilot Projects , Principal Component Analysis , Risk Assessment
5.
Proteomics Clin Appl ; 13(4): e1700111, 2019 07.
Article in English | MEDLINE | ID: mdl-30632678

ABSTRACT

PURPOSE: A highly-multiplexed LC-ESI-multiple reaction monitoring-MS-based assay is developed for the identification of coronary artery disease (CAD) biomarkers in human plasma. EXPERIMENTAL DESIGN: The assay is used to measure 107 stable isotope labeled peptide standards and native peptides from 64 putative biomarkers of cardiovascular diseases in tryptic digests of plasma from subjects with (n = 70) and without (n = 45) angiographic evidence of CAD and no subsequent cardiovascular mortality during follow-up. RESULTS: Extensive computational and statistical analysis reveals six plasma proteins associated with CAD, namely apolipoprotein CII, C reactive protein, CD5 antigen-like, fibronectin, inter alpha trypsin inhibitor heavy chain H1, and protein S. The identified proteins are combined into a LASSO-logistic score with high classification performance (cross-validated area under the curve = 0.74). When combined with a separate score computed from markers currently used in the clinic with similar performance, the area under the receiver operating curve increases to 0.84. Similar results are observed in an independent set of subjects (n = 87). CONCLUSIONS AND CLINICAL RELEVANCE: If externally validated, the assay and identified biomarkers can improve CAD risk stratification.


Subject(s)
Blood Proteins/metabolism , Coronary Artery Disease/blood , Peptides/blood , Proteomics , Chromatography, Liquid , Female , Follow-Up Studies , Humans , Male , Mass Spectrometry , Middle Aged
6.
ESC Heart Fail ; 4(3): 301-311, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28772032

ABSTRACT

AIMS: Heart failure with preserved ejection fraction (HFpEF) accounts for 30-50% of patients with heart failure (HF). A major obstacle in HF management is the difficulty in differentiating between HFpEF and heart failure with reduced ejection fraction (HFrEF) using conventional clinical and laboratory investigations. The aim of this study is to develop robust transcriptomic and proteomic biomarker signatures that can differentiate HFpEF from HFrEF. METHODS AND RESULTS: A total of 210 HF patients were recruited in participating institutions from the Alberta HEART study. An expert clinical adjudicating panel differentiated between patients with HFpEF and HFrEF. The discovery cohort consisted of 61 patients, and the replication cohort consisted of 70 patients. Transcriptomic and proteomic data were analysed to find panels of differentiating HFpEF from HFrEF. In the discovery cohort, a 22-transcript panel was found to differentiate HFpEF from HFrEF in male patients with a cross-validation AUC of 0.74, as compared with 0.70 for N-terminal pro-B-type natriuretic peptide (NT-proBNP) in those same patients. An ensemble of the transcript panel and NT-pro-BNP yielded a cross-validation AUC of 0.80. This performance improvement was also observed in the replication cohort. An ensemble of the transcriptomic panel with NT-proBNP produced a replication AUC of 0.90, as compared with 0.74 for NT-proBNP alone and 0.73 for the transcriptomic panel. CONCLUSIONS: We have identified a male-specific transcriptomic biomarker panel that can differentiate between HFpEF and HFrEF. These biosignatures could be further replicated on other patients and potentially be developed into a blood test for better management of HF patients.

7.
PLoS One ; 12(1): e0170842, 2017.
Article in English | MEDLINE | ID: mdl-28125729

ABSTRACT

BACKGROUND: Identifying non-invasive and reliable blood-derived biomarkers for early detection of acute cellular rejection in heart transplant recipients is of great importance in clinical practice. MicroRNAs are small molecules found to be stable in serum and their expression patterns reflect both physiological and underlying pathological conditions in human. METHODS: We compared a group of heart transplant recipients with histologically-verified acute cellular rejection (ACR, n = 26) with a control group of heart transplant recipients without allograft rejection (NR, n = 37) by assessing the levels of a select set of microRNAs in serum specimens. RESULTS: The levels of seven microRNAs, miR-142-3p, miR-101-3p, miR-424-5p, miR-27a-3p, miR-144-3p, miR-339-3p and miR-326 were significantly higher in ACR group compared to the control group and could discriminate between patients with and without allograft rejection. MiR-142-3p and miR-101-3p had the best diagnostic test performance among the microRNAs tested. Serum levels of miR-142-3p and miR-101-3p were independent of calcineurin inhibitor levels, as measured by tacrolimus and cyclosporin; kidney function, as measured by creatinine level, and general inflammation state, as measured by CRP level. CONCLUSION: This study demonstrated two microRNAs, miR-142-3p and miR-101-3p, that could be relevant as non-invasive diagnostic tools for identifying heart transplant patients with acute cellular rejection.


Subject(s)
Graft Rejection/blood , Graft Rejection/diagnosis , Heart Transplantation , MicroRNAs/blood , Adaptor Proteins, Signal Transducing/blood , Adaptor Proteins, Signal Transducing/genetics , Adult , Biomarkers/blood , C-Reactive Protein/metabolism , Case-Control Studies , Creatinine/blood , Cyclosporine/blood , Female , Gene Expression Regulation , Graft Rejection/immunology , Graft Rejection/pathology , Humans , Male , MicroRNAs/genetics , Middle Aged , Signal Transduction , Tacrolimus/blood
8.
Cardiovasc Res ; 113(5): 440-452, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28073833

ABSTRACT

AIMS: Exosome-mediated microRNA transfer is a recently discovered mode of cell-to-cell communication, in which microRNAs act as paracrine molecules, exerting their regulatory effects in recipient cells. T cells and endothelial cells are two main players in the mechanism of acute cellular cardiac rejection. The aim of this study was to investigate the role of exosomal microRNAs in the crosstalk between T cells and endothelial cells and its implications for the molecular mechanisms that drive acute cellular rejection in heart transplantation. METHODS AND RESULTS: Exosomes isolated from serum samples of heart transplant patients with and without acute cardiac allograft rejection were profiled and showed enrichment of miR-142-3p, miR-92a-3p, miR-339-3p and miR-21-5p. Treatment of endothelial cells with the respected serum exosomes resulted the increased of miR-142-3p level in endothelial cells. Using T cells isolated from healthy donors and activated with either anti-CD3/CD28 antibody or IL-2/PHA, we could show that miR-142-3p is released from activated cells, is contained in exosomes and can be transferred to human vascular endothelial cells in vitro. Transcriptome analysis of endothelial cells treated with activated T cell supernatant with or without exosomes was used to identify mRNA targets of transferred miR-142-3-p. Overexpression of miR-142-3p in endothelial cells resulted in a significant down-regulation of RAB11FIP2, and interaction of miR-142-3p with its predicted target site was confirmed with a reporter assay. Moreover, treatment of endothelial cells with serum exosomes from heart transplant patients with acute cellular rejection resulted in down-regulation of RAB11FIP2 expression and increase in vascular endothelial permeability. CONCLUSION: We have identified a novel mechanism whereby miR-142-3p, a microRNA enriched in exosomes during acute cellular rejection, is transferred to endothelial cells and compromises endothelial barrier function via down-regulation of RAB11FIP2. This study sheds new light on the interaction between host immune system and cardiac allograft endothelium during acute cellular rejection.


Subject(s)
Capillary Permeability , Carrier Proteins/metabolism , Exosomes/metabolism , Graft Rejection/blood , Heart Transplantation/adverse effects , Human Umbilical Vein Endothelial Cells/metabolism , Membrane Proteins/metabolism , MicroRNAs/blood , T-Lymphocytes/metabolism , 3' Untranslated Regions , Acute Disease , Adult , Aged , Allografts , Binding Sites , Carrier Proteins/genetics , Cells, Cultured , Culture Media, Conditioned/metabolism , Down-Regulation , Exosomes/immunology , Female , Graft Rejection/genetics , Graft Rejection/immunology , Human Umbilical Vein Endothelial Cells/immunology , Humans , Lymphocyte Activation , Male , Membrane Proteins/genetics , MicroRNAs/genetics , Middle Aged , Paracrine Communication , Signal Transduction , T-Lymphocytes/immunology , Transfection , Up-Regulation , rab GTP-Binding Proteins
9.
J Proteomics ; 118: 2-11, 2015 Apr 06.
Article in English | MEDLINE | ID: mdl-25753122

ABSTRACT

Multiple sclerosis (MS) is associated with chronic degeneration of the central nervous system and may cause permanent neurological problems and considerable disability. While its causes remain unclear, its extensive phenotypic variability makes its prognosis and treatment difficult. The identification of serum proteomic biomarkers of MS progression could further our understanding of the molecular mechanisms related to MS disease processes. In the current study, we used isobaric tagging for relative and absolute protein quantification (iTRAQ) methodology and advanced multivariate statistical analysis to quantify and identify potential serum biomarker proteins of MS progression. We identified a panel of 11 proteins and combined them into a classifier that best classified samples into the two disease groups. The estimated area under the receiver operating curve of this classifier was 0.88 (p-value=0.017), with 86% sensitivity and specificity. The identified proteins encompassed processes related to inflammation, opsonization, and complement activation. Results from this study are in particular valuable to design a targeted Multiple Reaction Monitoring mass spectrometry based (MRM-MS) assay to conduct an external validation in an independent and larger cohort of patients. Validated biomarkers may result in the development of a minimally-invasive tool to monitor MS progression and complement current clinical practices. BIOLOGICAL SIGNIFICANCE: A hallmark of multiple sclerosis is the unpredictable disease course (progression). There are currently no clinically useful biomarkers of MS disease progression; most work has focused on the analysis of CSF, which requires an invasive procedure. Here, we explore the potential of proteomics to identify panels of serum biomarkers of disease progression in MS. By comparing the protein signatures of two challenging to obtain, but well-defined, MS phenotypic groups at the extremes of progression (benign and aggressive cases of MS), we identified proteins that encompass processes related to inflammation, opsonization, and complement activation. Findings require validation, but are an important step on the pathway to clinically useful biomarker discovery. This article is part of a Special Issue entitled: Protein dynamics in health and disease. Guest Editors: Pierre Thibault and Anne-Claude Gingras.


Subject(s)
Blood Proteins/metabolism , Disease Progression , Multiple Sclerosis/blood , Proteome/metabolism , Proteomics , Adult , Biomarkers/blood , Female , Humans , Male
10.
Eur J Heart Fail ; 17(3): 291-300, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25619383

ABSTRACT

AIMS: Anderson-Fabry disease (AFD) is an important X-linked metabolic disease resulting in progressive end-organ involvement, with cardiac disease being the dominant determinant of survival in a gender-dependent manner. Recent epidemiological screening for AFD suggests the prevalence is much higher than previously recognized, with estimates of 1:3000. Our aim was to discover novel plasma biomarker signatures in adult patients with AFD. METHODS AND RESULTS: We used an unbiased proteomic screening approach to discover novel plasma biomarker signatures. In the discovery cohort of 46 subjects, 14 healthy controls and 32 patients with AFD, we used a mass spectrometry iTRAQ proteomic approach followed by multiple reaction monitoring (MRM) assays to identify biomarkers. Of the 38 protein groups discovered by iTRAQ, 18 already had existing MRM assays. Based on MRM, we identified an eight-protein biomarker panel (22 kDa protein, afamin, α1 antichymotrypsin, apolipoprotein E, ß-Ala His dipeptidase, haemoglobin α-2, isoform 1 of sex hormone-binding globulin, and peroxiredoxin 2) that was very specific and sensitive for male AFD patients. In female AFD patients, we identified a nine-marker panel of proteins with only three proteins, apolipoprotein E, haemoglobin α-2, and peroxiredoxin 2, common to both genders, suggesting a gender-specific alteration in plasma biomarkers in patients with AFD. The biomarkers were validated in plasma samples from 48 subjects using MRM, and they performed inferiorly in patients with heart failure. CONCLUSIONS: We have identified gender-specific plasma protein biomarker panels that are specific and sensitive for the AFD phenotype. The gender-specific panels offer important insight into potential differences in pathophysiology and prognosis between males and females with AFD.


Subject(s)
Biomarkers/blood , Blood Proteins/metabolism , Cerebrovascular Disorders/blood , Fabry Disease/blood , Proteomics/methods , Adolescent , Adult , Aged , Aspirin/administration & dosage , Cross-Sectional Studies , Female , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Male , Mass Spectrometry , Middle Aged , Sex Factors , Young Adult , alpha-Galactosidase/genetics
11.
PLoS One ; 9(4): e95224, 2014.
Article in English | MEDLINE | ID: mdl-24733377

ABSTRACT

Acute rejection is a major complication of solid organ transplantation that prevents the long-term assimilation of the allograft. Various populations of lymphocytes are principal mediators of this process, infiltrating graft tissues and driving cell-mediated cytotoxicity. Understanding the lymphocyte-specific biology associated with rejection is therefore critical. Measuring genome-wide changes in transcript abundance in peripheral whole blood cells can deliver a comprehensive view of the status of the immune system. The heterogeneous nature of the tissue significantly affects the sensitivity and interpretability of traditional analyses, however. Experimental separation of cell types is an obvious solution, but is often impractical and, more worrying, may affect expression, leading to spurious results. Statistical deconvolution of the cell type-specific signal is an attractive alternative, but existing approaches still present some challenges, particularly in a clinical research setting. Obtaining time-matched sample composition to biologically interesting, phenotypically homogeneous cell sub-populations is costly and adds significant complexity to study design. We used a two-stage, in silico deconvolution approach that first predicts sample composition to biologically meaningful and homogeneous leukocyte sub-populations, and then performs cell type-specific differential expression analysis in these same sub-populations, from peripheral whole blood expression data. We applied this approach to a peripheral whole blood expression study of kidney allograft rejection. The patterns of differential composition uncovered are consistent with previous studies carried out using flow cytometry and provide a relevant biological context when interpreting cell type-specific differential expression results. We identified cell type-specific differential expression in a variety of leukocyte sub-populations at the time of rejection. The tissue-specificity of these differentially expressed probe-set lists is consistent with the originating tissue and their functional enrichment consistent with allograft rejection. Finally, we demonstrate that the strategy described here can be used to derive useful hypotheses by validating a cell type-specific ratio in an independent cohort using the nanoString nCounter assay.


Subject(s)
Allografts/metabolism , Cell Compartmentation/genetics , Computer Simulation , Graft Rejection/blood , Graft Rejection/genetics , Kidney Transplantation , Lymphocytes/cytology , Transcriptome/genetics , Cohort Studies , Databases, Genetic , Gene Expression Profiling , Gene Expression Regulation , Genome, Human , Humans , Leukocyte Count , Reproducibility of Results , Time Factors
12.
PLoS One ; 9(3): e91041, 2014.
Article in English | MEDLINE | ID: mdl-24608128

ABSTRACT

BACKGROUND: The molecular profile of circulating blood can reflect physiological and pathological events occurring in other tissues and organs of the body and delivers a comprehensive view of the status of the immune system. Blood has been useful in studying the pathobiology of many diseases. It is accessible and easily collected making it ideally suited to the development of diagnostic biomarker tests. The blood transcriptome has a high complement of globin RNA that could potentially saturate next-generation sequencing platforms, masking lower abundance transcripts. Methods to deplete globin mRNA are available, but their effect has not been comprehensively studied in peripheral whole blood RNA-Seq data. In this study we aimed to assess technical variability associated with globin depletion in addition to assessing general technical variability in RNA-Seq from whole blood derived samples. RESULTS: We compared technical and biological replicates having undergone globin depletion or not and found that the experimental globin depletion protocol employed removed approximately 80% of globin transcripts, improved the correlation of technical replicates, allowed for reliable detection of thousands of additional transcripts and generally increased transcript abundance measures. Differential expression analysis revealed thousands of genes significantly up-regulated as a result of globin depletion. In addition, globin depletion resulted in the down-regulation of genes involved in both iron and zinc metal ion bonding. CONCLUSIONS: Globin depletion appears to meaningfully improve the quality of peripheral whole blood RNA-Seq data, and may improve our ability to detect true biological variation. Some concerns remain, however. Key amongst them the significant reduction in RNA yields following globin depletion. More generally, our investigation of technical and biological variation with and without globin depletion finds that high-throughput sequencing by RNA-Seq is highly reproducible within a large dynamic range of detection and provides an accurate estimation of RNA concentration in peripheral whole blood. High-throughput sequencing is thus a promising technology for whole blood transcriptomics and biomarker discovery.


Subject(s)
Blood Proteins/genetics , Globins/chemistry , RNA, Messenger/blood , Transcriptome , Female , Gene Expression Profiling , Gene Expression Regulation , Globins/deficiency , High-Throughput Nucleotide Sequencing , Humans , Male , Molecular Sequence Annotation , Reproducibility of Results , Sensitivity and Specificity
13.
Bioinform Biol Insights ; 8: 17-33, 2014.
Article in English | MEDLINE | ID: mdl-24526836

ABSTRACT

In this study, we explored a time course of peripheral whole blood transcriptomes from kidney transplantation patients who either experienced an acute rejection episode or did not in order to better delineate the immunological and biological processes measureable in blood leukocytes that are associated with acute renal allograft rejection. Using microarrays, we generated gene expression data from 24 acute rejectors and 24 nonrejectors. We filtered the data to obtain the most unambiguous and robustly expressing probe sets and selected a subset of patients with the clearest phenotype. We then performed a data-driven exploratory analysis using data reduction and differential gene expression analysis tools in order to reveal gene expression signatures associated with acute allograft rejection. Using a template-matching algorithm, we then expanded our analysis to include time course data, identifying genes whose expression is modulated leading up to acute rejection. We have identified molecular phenotypes associated with acute renal allograft rejection, including a significantly upregulated signature of neutrophil activation and accumulation following transplant surgery that is common to both acute rejectors and nonrejectors. Our analysis shows that this expression signature appears to stabilize over time in nonrejectors but persists in patients who go on to reject the transplanted organ. In addition, we describe an expression signature characteristic of lymphocyte activity and proliferation. This lymphocyte signature is significantly downregulated in both acute rejectors and nonrejectors following surgery; however, patients who go on to reject the organ show a persistent downregulation of this signature relative to the neutrophil signature.

14.
Eur J Heart Fail ; 16(5): 551-9, 2014 May.
Article in English | MEDLINE | ID: mdl-24574204

ABSTRACT

AIMS: Chronic heart failure is a costly epidemic that affects up to 2% of people in developed countries. The purpose of this study was to discover novel blood proteomic biomarker signatures of recovered heart function that could lead to more effective heart failure patient management by both primary care and specialty physicians. METHODS AND RESULTS: The discovery cohort included 41 heart transplant patients and 20 healthy individuals. Plasma levels of 138 proteins were detected in at least 75% of these subjects by iTRAQ mass spectrometry. Eighteen proteins were identified that had (i) differential levels between pre-transplant patients with end-stage heart failure and healthy individuals; and (ii) levels that returned to normal by 1 month post-transplant in patients with stable heart function after transplantation. Seventeen of the 18 markers were validated by multiple reaction monitoring mass spectrometry in a cohort of 39 heart failure patients treated with drug therapy, of which 30 had recovered heart function and 9 had not. This 17-protein biomarker panel had 93% sensitivity and 89% specificity, while the RAMP® NT-proBNP assay had the same specificity but 80% sensitivity. Performance further improved when the panel was combined with NT-proBNP, yielding a net reclassification index relative to NT-proBNP of 0.28. CONCLUSIONS: We have identified potential blood biomarkers of recovered heart function by harnessing data from transplant patients. These biomarkers can lead to the development of an inexpensive protein-based blood test that could be used by physicians to monitor response to therapy in heart failure, resulting in more personalized, front-line heart failure patient management.


Subject(s)
Blood Proteins , Cardiovascular Agents/therapeutic use , Heart Failure , Heart Transplantation/methods , Adult , Aged , Biomarkers/analysis , Biomarkers/blood , Blood Proteins/analysis , Blood Proteins/classification , Data Interpretation, Statistical , Drug Monitoring/methods , Female , Heart Failure/blood , Heart Failure/diagnosis , Heart Failure/drug therapy , Heart Failure/surgery , Humans , Male , Middle Aged , Natriuretic Peptide, Brain/blood , Outcome Assessment, Health Care , Peptide Fragments/blood , Perioperative Care/methods , Recovery of Function/physiology , Research Design , Sensitivity and Specificity
15.
BMC Med Genomics ; 6: 23, 2013 Jun 28.
Article in English | MEDLINE | ID: mdl-23809614

ABSTRACT

BACKGROUND: End-stage renal failure is associated with profound changes in physiology and health, but the molecular causation of these pleomorphic effects termed "uremia" is poorly understood. The genomic changes of uremia were explored in a whole genome microarray case-control comparison of 95 subjects with end-stage renal failure (n = 75) or healthy controls (n = 20). METHODS: RNA was separated from blood drawn in PAXgene tubes and gene expression analyzed using Affymetrix Human Genome U133 Plus 2.0 arrays. Quality control and normalization was performed, and statistical significance determined with multiple test corrections (qFDR). Biological interpretation was aided by knowledge mining using NIH DAVID, MetaCore and PubGene RESULTS: Over 9,000 genes were differentially expressed in uremic subjects compared to normal controls (fold change: -5.3 to +6.8), and more than 65% were lower in uremia. Changes appeared to be regulated through key gene networks involving cMYC, SP1, P53, AP1, NFkB, HNF4 alpha, HIF1A, c-Jun, STAT1, STAT3 and CREB1. Gene set enrichment analysis showed that mRNA processing and transport, protein transport, chaperone functions, the unfolded protein response and genes involved in tumor genesis were prominently lower in uremia, while insulin-like growth factor activity, neuroactive receptor interaction, the complement system, lipoprotein metabolism and lipid transport were higher in uremia. Pathways involving cytoskeletal remodeling, the clathrin-coated endosomal pathway, T-cell receptor signaling and CD28 pathways, and many immune and biological mechanisms were significantly down-regulated, while the ubiquitin pathway and certain others were up-regulated. CONCLUSIONS: End-stage renal failure is associated with profound changes in human gene expression which appears to be mediated through key transcription factors. Dialysis and primary kidney disease had minor effects on gene regulation, but uremia was the dominant influence in the changes observed. This data provides important insight into the changes in cellular biology and function, opportunities for biomarkers of disease progression and therapy, and potential targets for intervention in uremia.


Subject(s)
Biomarkers/metabolism , Gene Expression Profiling , Gene Expression/physiology , Kidney Failure, Chronic/genetics , Uremia/genetics , Adolescent , Adult , Aged , Blood Cells , Case-Control Studies , Female , Gene Regulatory Networks , Humans , Male , Middle Aged , Oligonucleotide Array Sequence Analysis , Signal Transduction , Young Adult
16.
J Heart Lung Transplant ; 32(7): 723-33, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23796154

ABSTRACT

BACKGROUND: Coronary angiography remains the most widely used tool for routine screening and diagnosis of cardiac allograft vasculopathy (CAV), a major pathologic process that develops in 50% of cardiac transplant recipients beyond the first year after transplant. Given the invasiveness, expense, discomfort, and risk of complications associated with angiography, a minimally invasive alternative that is sensitive and specific would be highly desirable for monitoring CAV in patients. METHODS: Plasma proteomic analysis using isobaric tags for relative and absolute quantitation-matrix-assisted laser desorption ionization double time-of-flight mass spectrometry was carried out on samples from 40 cardiac transplant patients (10 CAV, 9 non-significant CAV, 21 possible CAV). Presence of CAV was defined as left anterior descending artery diameter stenosis ≥ 40% by digital angiography and quantitatively measured by blinded expert appraisal. Moderated t-test robust-linear models for microarray data were used to identify biomarkers that are significantly differentially expressed between patient samples with CAV and with non-significant CAV. A proteomic panel for diagnosis of CAV was generated using the Elastic Net classification method. RESULTS: We identified an 18-plasma protein biomarker classifier panel that was able to classify and differentiate patients with angiographically significant CAV from those without significant CAV, with an 80% sensitivity and 89% specificity, while providing insight into the possible underlying immune and non-alloimmune contributory mechanisms of CAV. CONCLUSION: Our results support of the potential utility of proteomic biomarker panels as a minimally invasive means to identify patients with significant, angiographically detectable coronary artery stenosis in the cardiac allograft, in the context of post-cardiac transplantation monitoring and screening for CAV. The potential biologic significance of the biomarkers identified may also help improve our understanding of CAV pathophysiology.


Subject(s)
Blood Proteins/analysis , Heart Transplantation/adverse effects , Vascular Diseases/blood , Vascular Diseases/etiology , Female , Humans , Male , Middle Aged , Proteomics , Transplantation, Homologous
17.
PLoS Comput Biol ; 9(4): e1002963, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23592955

ABSTRACT

Recent technical advances in the field of quantitative proteomics have stimulated a large number of biomarker discovery studies of various diseases, providing avenues for new treatments and diagnostics. However, inherent challenges have limited the successful translation of candidate biomarkers into clinical use, thus highlighting the need for a robust analytical methodology to transition from biomarker discovery to clinical implementation. We have developed an end-to-end computational proteomic pipeline for biomarkers studies. At the discovery stage, the pipeline emphasizes different aspects of experimental design, appropriate statistical methodologies, and quality assessment of results. At the validation stage, the pipeline focuses on the migration of the results to a platform appropriate for external validation, and the development of a classifier score based on corroborated protein biomarkers. At the last stage towards clinical implementation, the main aims are to develop and validate an assay suitable for clinical deployment, and to calibrate the biomarker classifier using the developed assay. The proposed pipeline was applied to a biomarker study in cardiac transplantation aimed at developing a minimally invasive clinical test to monitor acute rejection. Starting with an untargeted screening of the human plasma proteome, five candidate biomarker proteins were identified. Rejection-regulated proteins reflect cellular and humoral immune responses, acute phase inflammatory pathways, and lipid metabolism biological processes. A multiplex multiple reaction monitoring mass-spectrometry (MRM-MS) assay was developed for the five candidate biomarkers and validated by enzyme-linked immune-sorbent (ELISA) and immunonephelometric assays (INA). A classifier score based on corroborated proteins demonstrated that the developed MRM-MS assay provides an appropriate methodology for an external validation, which is still in progress. Plasma proteomic biomarkers of acute cardiac rejection may offer a relevant post-transplant monitoring tool to effectively guide clinical care. The proposed computational pipeline is highly applicable to a wide range of biomarker proteomic studies.


Subject(s)
Biomarkers/analysis , Blood Proteins/analysis , Computational Biology/methods , Heart Transplantation , Proteomics/methods , Calibration , Cohort Studies , Enzyme-Linked Immunosorbent Assay , Graft Rejection , Heart Failure/therapy , Humans , Inflammation , Mass Spectrometry , Proteome/analysis
18.
J Heart Lung Transplant ; 32(2): 259-65, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23265908

ABSTRACT

BACKGROUND: Acute rejection in cardiac transplant patients remains a contributory factor to limited survival of implanted hearts. Currently, there are no biomarkers in clinical use that can predict, at the time of transplantation, the likelihood of post-transplant acute cellular rejection. Such a development would be of great value in personalizing immunosuppressive treatment. METHODS: Recipient age, donor age, cold ischemic time, warm ischemic time, panel-reactive antibody, gender mismatch, blood type mismatch and human leukocyte antigens (HLA-A, -B and -DR) mismatch between recipients and donors were tested in 53 heart transplant patients for their power to predict post-transplant acute cellular rejection. Donor transplant biopsy and recipient pre-transplant blood were also examined for the presence of genomic biomarkers in 7 rejection and 11 non-rejection patients, using non-targeted data mining techniques. RESULTS: The biomarker based on the 8 clinical variables had an area under the receiver operating characteristic curve (AUC) of 0.53. The pre-transplant recipient blood gene-based panel did not yield better performance, but the donor heart tissue gene-based panel had an AUC = 0.78. A combination of 25 probe sets from the transplant donor biopsy and 18 probe sets from the pre-transplant recipient whole blood had an AUC = 0.90. Biologic pathways implicated include VEGF- and EGFR-signaling, and MAPK. CONCLUSIONS: Based on this study, the best predictive biomarker panel contains genes from recipient whole blood and donor myocardial tissue. This panel provides clinically relevant prediction power and, if validated, may personalize immunosuppressive treatment and rejection monitoring.


Subject(s)
Gene Expression , Graft Rejection/epidemiology , Heart Transplantation/immunology , Adult , Biomarkers/analysis , Female , Humans , Male , Middle Aged , Predictive Value of Tests , ROC Curve , Risk Assessment , Sensitivity and Specificity
19.
Bioinform Biol Insights ; 6: 49-61, 2012.
Article in English | MEDLINE | ID: mdl-22550401

ABSTRACT

Acute cardiac allograft rejection is a serious complication of heart transplantation. Investigating molecular processes in whole blood via microarrays is a promising avenue of research in transplantation, particularly due to the non-invasive nature of blood sampling. However, whole blood is a complex tissue and the consequent heterogeneity in composition amongst samples is ignored in traditional microarray analysis. This complicates the biological interpretation of microarray data. Here we have applied a statistical deconvolution approach, cell-specific significance analysis of microarrays (csSAM), to whole blood samples from subjects either undergoing acute heart allograft rejection (AR) or not (NR). We identified eight differentially expressed probe-sets significantly correlated to monocytes (mapping to 6 genes, all down-regulated in ARs versus NRs) at a false discovery rate (FDR) ≤ 15%. None of the genes identified are present in a biomarker panel of acute heart rejection previously published by our group and discovered in the same data***.

20.
J Card Fail ; 17(10): 867-74, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21962426

ABSTRACT

BACKGROUND: To date, gene expression studies related to chronic heart failure (CHF) have mainly involved microarray analysis of myocardial tissues. The potential utility of blood to infer the etiology, pathogenesis, and course of CHF remains unclear. Further, the use of proteomic and metabolomic platforms for molecular profiling of CHF is relatively unexplored. METHODS: Microarray genomic, iTRAQ proteomic, and nuclear magnetic resonance metabolomic analyses were carried out on blood samples from 29 end-stage CHF patients (16 ischemic heart disease [IHD], 13 nonischemic cardiomyopathy [NICM]), and 20 normal cardiac function (NCF) controls. Robust statistical tests and bioinformatical tools were applied to identify and compare the molecular signatures among these subject groups. RESULTS: No genes or proteins, and only two metabolites, were differentially expressed between IHD and NICM patients at end stage. However, CHF versus NCF comparison revealed differential expression of 7,426 probe sets, 71 proteins, and 8 metabolites. Functional enrichment analyses of the CHF versus NCF results revealed several in-common biological themes and potential mechanisms underlying advanced heart failure. CONCLUSION: Multiple "-omic" analyses support the convergence of dramatic changes in molecular processes underlying IHD and NICM at end stage.


Subject(s)
Cardiomyopathies/genetics , Heart Failure/genetics , Adult , Aged , Cardiomyopathies/blood , Case-Control Studies , Female , Gene Expression Profiling , Heart Failure/blood , Humans , Male , Middle Aged , Proteomics , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL
...