Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Great Lakes Res ; 49(3): 608-620, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37324162

ABSTRACT

Using the US EPA's Grants Reporting and Tracking System (GRTS), we test if completion of best management practices (BMPs) through the Clean Water Act Section (§)319 National Nonpoint Source Program was associated with a decreasing trend in total suspended solids (TSS) load (metric tons/year). The study area chosen had 21 completed projects in the Cuyahoga River watershed in northeastern Ohio from 2000 to 2018. The §319 projects ranged from dam removal, floodplain/wetland restoration to stormwater projects. There was an overall decreasing trend in TSS loads. We identified three phases of project implementation and completion, where phase 1 had ongoing projects, but none completed (2000-2004). The steepest decrease in loads, identified as phase 2 (2005-2011), was associated with completion of low-head dam modification and removal projects on the mainstem of the Cuyahoga River. A likely decreasing trend was associated with projects completed in the tributaries, such as natural channel design restoration and stormwater green infrastructure (phase 3). Pairing sediment reduction estimates from projects with the river's flow normalized TSS loading trend, we estimated that the §319 effort may account for a small fraction of the TSS load reduction. Other stream restoration projects (non-§319) have also been done in the Cuyahoga watershed by other organizations. However, trying to compile these other projects is challenging in larger watersheds having multiple municipalities, agencies, and nonprofits doing restoration without better coordinated record keeping and monitoring. While a decreasing trend in a pollutant load is a desirable water quality outcome, determining what contributed to that trend remains difficult.

2.
River Res Appl ; 36(8): 1385-1397, 2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33364915

ABSTRACT

Stream and river restoration practices have become common in many parts of the world. We ask the question whether such restorations improve freshwater biotic assemblages or functions over time, and if not, can general reasons be identified for such outcomes. We conducted a literature survey and review of studies in which different types of stream restorations were conducted and outcomes reported. These restoration types included culvert restoration; acid mine restoration or industrial pollutant restoration; urban stream restoration; dam removal, changes in dam operation, or fish passage structures; instream habitat modification; riparian restoration or woody material addition; channel restoration and multiple restorations. The streams ranged from headwater streams to large rivers, and the regions included North America, Europe, Australia and New Zealand, and a small number of sites in Asia and Africa. In this part of the review, we describe the methods used for the review and present reviews for the first three types of stream restorations. For culvert restorations, the small sample size and variable study design and biotic responses limited generalizing about temporal and spatial scale effects for that restoration type. The complex and often lengthy time to restore streams from acid mine drainage and industrial pollutants often resulted in positive biotic responses, but restored sites had reduced responses compared to reference sites. Most urban stream restorations had minimal or mixed improvements in biotic responses, with one mismatch in spatial scale evidenced by hydraulic structures used in a restoration unable to withstand peak discharge.

3.
River Res Appl ; 36(8): 1398-1415, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33363446

ABSTRACT

Stream and river restoration practices have become common in many parts of the world. To answer the question whether such restoration measures improve freshwater biotic assemblages or functions over time, and if not, can general reasons be identified for such outcomes, we conducted a literature survey and review of studies in which different types of stream restorations were conducted and outcomes assessed. In the first paper, we reviewed studies of culvert restorations, acid mine drainage or industrial pollution restoration; and urban stream restoration projects. Here, we review studies of restoration via dam removal, changes in dam operation or fish passage structures; instream habitat modification; riparian restoration or woody material addition; channel restoration and multiple restoration measures and develop some general conclusions from these reviews. Biomonitoring in different studies detected improvements for some restoration measures; other studies found minimal or no statistically significant increases in biotic assemblage richness, abundances or functions. In some cases, untreated stressors may have influenced the outcomes of the restoration, but in many cases, there were mismatches in the temporal or spatial scale of the restoration measure undertaken and associated monitoring. For example, either biomonitoring to measure restoration effects was conducted over a too short a time period after restoration for effects to be observed, or the sources and stressors needing remediation occurred at a larger catchment scale than the restoration. Also, many restoration measures lack observations from unimpaired reference sites for use in predicting how much of a beneficial effect might be expected.

4.
Freshw Sci ; 39(4): 1-18, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33747635

ABSTRACT

Secondary salinization, the increase of anthropogenically-derived salts in freshwaters, threatens freshwater biota and ecosystems, drinking water supplies, and infrastructure. The various anthropogenic sources of salts and their locations in a watershed may result in secondary salinization of river and stream networks through multiple inputs. We developed a watershed predictive assessment to investigate the degree to which topology, land-cover, and land-use covariates affect stream specific conductivity (SC), a measure of salinity. We used spatial stream network models to predict SC throughout an Appalachian stream network in a watershed affected by surface coal mining. During high-discharge conditions, 8 to 44% of stream km in the watershed exceeded the SC benchmark of 300 µS/cm, which is meant to be protective of aquatic life in the Central Appalachian ecoregion. During low-discharge conditions, 96 to 100% of stream km exceeded the benchmark. The 2 different discharge conditions altered the spatial dependency of SC among the stream monitoring sites. During most low discharges, SC was a function of upstream-to-downstream network distances, or flow-connected distances, among the sites. Flow-connected distances are indicative of upstream dependencies affecting stream SC. During high discharge, SC was related to both flow-connected distances and flow-unconnected distances (i.e., distances between sites on different branches of the network). Flow-unconnected distances are indicative of processes on adjacent branches and their catchments affecting stream SC. With sites distributed from headwaters to the watershed outlet, the extent of impacts from secondary salinization could be better spatially predicted and assessed with spatial stream network models than with models assuming spatial independence. Importantly, the assessment also recognized the multi-scale spatial relationships that can occur between the landscape and stream network.

5.
J Am Water Resour Assoc ; 54(2): 323-345, 2018 Apr.
Article in English | MEDLINE | ID: mdl-30245566

ABSTRACT

Streams, riparian areas, floodplains, alluvial aquifers and downstream waters (e.g., large rivers, lakes, oceans) are interconnected by longitudinal, lateral, and vertical fluxes of water, other materials and energy. Collectively, these interconnected waters are called fluvial hydrosystems. Physical and chemical connectivity within fluvial hydrosystems is created by the transport of nonliving materials (e.g., water, sediment, nutrients, contaminants) which either do or do not chemically change (chemical and physical connections, respectively). A substantial body of evidence unequivocally demonstrates physical and chemical connectivity between streams and riparian wetlands and downstream waters. Streams and riparian wetlands are structurally connected to downstream waters through the network of continuous channels and floodplain form that make these systems physically contiguous, and the very existence of these structures provides strong geomorphologic evidence for connectivity. Functional connections between streams and riparian wetlands and their downstream waters vary geographically and over time, based on proximity, relative size, environmental setting, material disparity, and intervening units. Because of the complexity and dynamic nature of connections among fluvial hydrosystem units, a complete accounting of the physical and chemical connections and their consequences to downstream waters should aggregate over multiple years to decades.

6.
J Am Water Resour Assoc ; 53(4): 944-960, 2017 Aug.
Article in English | MEDLINE | ID: mdl-30034212

ABSTRACT

Spatial data are playing an increasingly important role in watershed science and management. Large investments have been made by government agencies to provide nationally-available spatial databases; however, their relevance and suitability for local watershed applications is largely unscrutinized. We investigated how goodness of fit and predictive accuracy of total phosphorus (TP) concentration models developed from nationally-available spatial data could be improved by including local watershed-specific data in the East Fork of the Little Miami River, Ohio, a 1290 km2 watershed. We also determined whether a spatial stream network (SSN) modeling approach improved on multiple linear regression (nonspatial) models. Goodness of fit and predictive accuracy were highest for the SSN model that included local covariates, and lowest for the nonspatial model developed from national data. Septic systems and point source TP loads were significant covariates in the local models. These local data not only improved the models but enabled a more explicit interpretation of the processes affecting TP concentrations than more generic national covariates. The results suggest that SSN modeling greatly improves prediction and should be applied when using national covariates. Including local covariates further increases the accuracy of TP predictions throughout the studied watershed; such variables should be included in future national databases, particularly the locations of septic systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...