Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
2.
Nucleic Acids Res ; 43(18): 8924-41, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26384421

ABSTRACT

CRISPR-associated endonuclease Cas9 cuts DNA at variable target sites designated by a Cas9-bound RNA molecule. Cas9's ability to be directed by single 'guide RNA' molecules to target nearly any sequence has been recently exploited for a number of emerging biological and medical applications. Therefore, understanding the nature of Cas9's off-target activity is of paramount importance for its practical use. Using atomic force microscopy (AFM), we directly resolve individual Cas9 and nuclease-inactive dCas9 proteins as they bind along engineered DNA substrates. High-resolution imaging allows us to determine their relative propensities to bind with different guide RNA variants to targeted or off-target sequences. Mapping the structural properties of Cas9 and dCas9 to their respective binding sites reveals a progressive conformational transformation at DNA sites with increasing sequence similarity to its target. With kinetic Monte Carlo (KMC) simulations, these results provide evidence of a 'conformational gating' mechanism driven by the interactions between the guide RNA and the 14th-17th nucleotide region of the targeted DNA, the stabilities of which we find correlate significantly with reported off-target cleavage rates. KMC simulations also reveal potential methodologies to engineer guide RNA sequences with improved specificity by considering the invasion of guide RNAs into targeted DNA duplex.


Subject(s)
CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/metabolism , DNA Cleavage , DNA/metabolism , Endodeoxyribonucleases/chemistry , Endodeoxyribonucleases/metabolism , Binding Sites , Humans , Microscopy, Atomic Force , Protein Binding , RNA/chemistry , RNA/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...