Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 102021 07 12.
Article in English | MEDLINE | ID: mdl-34251337

ABSTRACT

The endosome-associated cargo adaptor sorting nexin-27 (SNX27) is linked to various neuropathologies through sorting of integral proteins to the synaptic surface, most notably AMPA receptors. To provide a broader view of SNX27-associated pathologies, we performed proteomics in rat primary neurons to identify SNX27-dependent cargoes, and identified proteins linked to excitotoxicity, epilepsy, intellectual disabilities, and working memory deficits. Focusing on the synaptic adhesion molecule LRFN2, we established that SNX27 binds to LRFN2 and regulates its endosomal sorting. Furthermore, LRFN2 associates with AMPA receptors and knockdown of LRFN2 results in decreased surface AMPA receptor expression, reduced synaptic activity, and attenuated hippocampal long-term potentiation. Overall, our study provides an additional mechanism by which SNX27 can control AMPA receptor-mediated synaptic transmission and plasticity indirectly through the sorting of LRFN2 and offers molecular insight into the perturbed function of SNX27 and LRFN2 in a range of neurological conditions.


Subject(s)
Membrane Glycoproteins/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Receptors, AMPA/metabolism , Sorting Nexins/metabolism , Animals , Endosomes/metabolism , Hippocampus/metabolism , Humans , Long-Term Potentiation , Memory Disorders/metabolism , Protein Transport , Proteomics/methods , Rats , Synaptic Transmission
2.
Curr Biol ; 29(3): 484-491.e6, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30661800

ABSTRACT

The coordinated polarization of cells in the plane of a tissue, termed planar polarity, is a characteristic feature of epithelial tissues [1]. In the fly wing, trichome positioning is dependent on the core planar polarity proteins adopting asymmetric subcellular localizations at apical junctions, where they form intercellular complexes that link neighboring cells [1-3]. Specifically, the seven-pass transmembrane protein Frizzled and the cytoplasmic proteins Dishevelled and Diego localize to distal cell ends, the four-pass transmembrane protein Strabismus and the cytoplasmic protein Prickle localize proximally, and the seven-pass transmembrane spanning atypical cadherin Flamingo localizes both proximally and distally. To establish asymmetry, these core proteins are sorted from an initially uniform distribution; however, the mechanisms underlying this polarized trafficking remain poorly understood. Here, we describe the identification of retromer, a master controller of endosomal recycling [4-6], as a key component regulating core planar polarity protein localization in Drosophila. Through generation of mutants, we verify that loss of the retromer-associated Snx27 cargo adaptor, but notably not components of the Wash complex, reduces junctional levels of the core proteins Flamingo and Strabismus in the developing wing. We establish that Snx27 directly associates with Flamingo via its C-terminal PDZ binding motif, and we show that Snx27 is essential for normal Flamingo trafficking. We conclude that Wash-independent retromer function and the Snx27 cargo adaptor are important components in the endosomal recycling of Flamingo and Strabismus back to the plasma membrane and thus contribute to the establishment and maintenance of planar polarization.


Subject(s)
Cell Polarity/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/physiology , Endosomes/metabolism , Intercellular Junctions/metabolism , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/growth & development , Animals, Genetically Modified/physiology , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Female , Male , Protein Transport , Pupa/genetics , Pupa/growth & development , Pupa/physiology
3.
Mol Ther ; 25(10): 2404-2414, 2017 10 04.
Article in English | MEDLINE | ID: mdl-28927576

ABSTRACT

Abnormal alpha-synuclein (α-synuclein) expression and aggregation is a key characteristic of Parkinson's disease (PD). However, the exact mechanism(s) linking α-synuclein to the other central feature of PD, dopaminergic neuron loss, remains unclear. Therefore, improved cell and in vivo models are needed to investigate the role of α-synuclein in dopaminergic neuron loss. MicroRNA-7 (miR-7) regulates α-synuclein expression by binding to the 3' UTR of the Synuclein Alpha Non A4 Component of Amyloid Precursor (SNCA) gene and inhibiting its translation. We show that miR-7 is decreased in the substantia nigra of patients with PD and, therefore, may play an essential role in the regulation of α-synuclein expression. Furthermore, we have found that lentiviral-mediated expression of miR-7 complementary binding sites to stably induce a loss of miR-7 function results in an increase in α-synuclein expression in vitro and in vivo. We have also shown that depletion of miR-7 using a miR-decoy produces a loss of nigral dopaminergic neurons accompanied by a reduction of striatal dopamine content. These data suggest that miR-7 has an important role in the regulation of α-synuclein and dopamine physiology and may provide a new paradigm to study the pathology of PD.


Subject(s)
Dopaminergic Neurons/metabolism , MicroRNAs/metabolism , Substantia Nigra/metabolism , alpha-Synuclein/metabolism , Animals , Humans , Lentivirus/genetics , Locomotion/genetics , Locomotion/physiology , Male , Mice, Inbred C57BL , MicroRNAs/genetics , Parkinson Disease/genetics , Parkinson Disease/metabolism , alpha-Synuclein/genetics
4.
Curr Opin Cell Biol ; 47: 72-82, 2017 08.
Article in English | MEDLINE | ID: mdl-28399507

ABSTRACT

Efficient sorting and transportation of integral membrane proteins, such as ion channels, nutrient transporters, signalling receptors, cell-cell and cell-matrix adhesion molecules is essential for the function of cellular organelles and hence organism development and physiology. Retromer is a master controller of integral membrane protein sorting and transport through one of the major sorting station within eukaryotic cells, the endosomal network. Subtle de-regulation of retromer is an emerging theme in the pathoetiology of Parkinson's disease. Here we summarise recent advances in defining the neuroprotective role of retromer and how its de-regulation may contribute to Parkinson's disease by interfering with: lysosomal health and protein degradation, association with accessory proteins including the WASH complex and mitochondrial health.


Subject(s)
Endosomal Sorting Complexes Required for Transport/metabolism , Eukaryotic Cells/metabolism , Neuroprotection , Protein Transport , Animals , Cell-Matrix Junctions/metabolism , Humans , Parkinson Disease/metabolism , Parkinson Disease/pathology , Proteolysis
5.
J Cell Biol ; 214(4): 389-99, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27528657

ABSTRACT

The retromer complex acts as a scaffold for endosomal protein complexes that sort integral membrane proteins to various cellular destinations. The retromer complex is a heterotrimer of VPS29, VPS35, and VPS26. Two of these paralogues, VPS26A and VPS26B, are expressed in humans. Retromer dysfunction is associated with neurodegenerative disease, and recently, three VPS26A mutations (p.K93E, p.M112V, and p.K297X) were discovered to be associated with atypical parkinsonism. Here, we apply quantitative proteomics to provide a detailed description of the retromer interactome. By establishing a comparative proteomic methodology, we identify how this interactome is perturbed in atypical parkinsonism-associated VPS26A mutants. In particular, we describe a selective defect in the association of VPS26A (p.K297X) with the SNX27 cargo adaptor. By showing how a retromer mutant leads to altered endosomal sorting of specific PDZ ligand-containing cargo proteins, we reveal a new mechanism for perturbed endosomal cargo sorting in atypical parkinsonism.


Subject(s)
Endosomes/metabolism , Mutation/genetics , Parkinsonian Disorders/genetics , Protein Subunits/genetics , Cell Line , Humans , Protein Interaction Mapping , Protein Subunits/metabolism , Protein Transport , Sorting Nexins/metabolism
6.
Curr Biol ; 24(14): 1670-1676, 2014 07 21.
Article in English | MEDLINE | ID: mdl-24980502

ABSTRACT

Retromer is a protein assembly that plays a central role in orchestrating export of transmembrane-spanning cargo proteins from endosomes into retrieval pathways destined for the Golgi apparatus and the plasma membrane [1]. Recently, a specific mutation in the retromer component VPS35, VPS35(D620N), has linked retromer dysfunction to familial autosomal dominant and sporadic Parkinson disease [2, 3]. However, the effect of this mutation on retromer function remains poorly characterized. Here we established that in cells expressing VPS35(D620N) there is a perturbation in endosome-to-TGN transport but not endosome-to-plasma membrane recycling, which we confirm in patient cells harboring the VPS35(D620N) mutation. Through comparative stable isotope labeling by amino acids in cell culture (SILAC)-based analysis of wild-type VPS35 versus the VPS35(D620N) mutant interactomes, we establish that the major defect of the D620N mutation lies in the association to the actin-nucleating Wiskott-Aldrich syndrome and SCAR homolog (WASH) complex. Moreover, using isothermal calorimetry, we establish that the primary defect of the VPS35(D620N) mutant is a 2.2 ± 0.5-fold decrease in affinity for the WASH complex component FAM21. These data define the primary molecular defect in retromer assembly that arises from the VPS35(D620N) mutation and, by revealing functional effects on retromer-mediated endosome-to-TGN transport, provide new insight into retromer deregulation in Parkinson disease.


Subject(s)
Microfilament Proteins/metabolism , Parkinson Disease/genetics , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , Ankyrin Repeat/genetics , Antigens, Neoplasm/metabolism , Binding Sites/genetics , Cell Line, Tumor , Cells, Cultured , Endosomes/metabolism , Golgi Apparatus/metabolism , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins , Molecular Chaperones/metabolism , Mutation , Protein Binding/genetics , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...