Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
bioRxiv ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38915598

ABSTRACT

Genetic variation in the lysosomal and transmembrane protein 106B (TMEM106B) modifies risk for a diverse range of neurodegenerative disorders, especially frontotemporal lobar degeneration (FTLD) with progranulin (PGRN) haplo-insufficiency, although the molecular mechanisms involved are not yet understood. Through advances in cryo-electron microscopy (cryo-EM), homotypic aggregates of the C-Terminal domain of TMEM106B (TMEM CT) were discovered as a previously unidentified cytosolic proteinopathy in the brains of FTLD, Alzheimer's disease, progressive supranuclear palsy (PSP), and dementia with Lewy bodies (DLB) patients. While it remains unknown what role TMEM CT aggregation plays in neuronal loss, its presence across a range of aging related dementia disorders indicates involvement in multi-proteinopathy driven neurodegeneration. To determine the TMEM CT aggregation propensity and neurodegenerative potential, we characterized a novel transgenic C. elegans model expressing the human TMEM CT fragment constituting the fibrillar core seen in FTLD cases. We found that pan-neuronal expression of human TMEM CT in C. elegans causes neuronal dysfunction as evidenced by behavioral analysis. Cytosolic aggregation of TMEM CT proteins accompanied the behavioral dysfunction driving neurodegeneration, as illustrated by loss of GABAergic neurons. To investigate the molecular mechanisms driving TMEM106B proteinopathy, we explored the impact of PGRN loss on the neurodegenerative effect of TMEM CT expression. To this end, we generated TMEM CT expressing C. elegans with loss of pgrn-1, the C. elegans ortholog of human PGRN. Neither full nor partial loss of pgrn-1 altered the motor phenotype of our TMEM CT model suggesting TMEM CT aggregation occurs downstream of PGRN loss of function. We also tested the ability of genetic suppressors of tauopathy to rescue TMEM CT pathology. We found that genetic knockout of spop-1, sut-2, and sut-6 resulted in weak to no rescue of proteinopathy phenotypes, indicating that the mechanistic drivers of TMEM106B proteinopathy may be distinct from tauopathy. Taken together, our data demonstrate that TMEM CT aggregation can kill neurons. Further, expression of TMEM CT in C. elegans neurons provides a useful model for the functional characterization of TMEM106B proteinopathy in neurodegenerative disease.

2.
Brain ; 146(8): 3206-3220, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36732296

ABSTRACT

Alzheimer's disease and related disorders feature neurofibrillary tangles and other neuropathological lesions composed of detergent-insoluble tau protein. In recent structural biology studies of tau proteinopathy, aggregated tau forms a distinct set of conformational variants specific to the different types of tauopathy disorders. However, the constituents driving the formation of distinct pathological tau conformations on pathway to tau-mediated neurodegeneration remain unknown. Previous work demonstrated RNA can serve as a driver of tau aggregation, and RNA associates with tau containing lesions, but tools for evaluating tau/RNA interactions remain limited. Here, we employed molecular interaction studies to measure the impact of tau/RNA binding on tau microtubule binding and aggregation. To investigate the importance of tau/RNA complexes (TRCs) in neurodegenerative disease, we raised a monoclonal antibody (TRC35) against aggregated tau/RNA complexes. We showed that native tau binds RNA with high affinity but low specificity, and tau binding to RNA competes with tau-mediated microtubule assembly functions. Tau/RNA interaction in vitro promotes the formation of higher molecular weight tau/RNA complexes, which represent an oligomeric tau species. Coexpression of tau and poly(A)45 RNA transgenes in Caenorhabditis elegans exacerbates tau-related phenotypes including neuronal dysfunction and pathological tau accumulation. TRC35 exhibits specificity for Alzheimer's disease-derived detergent-insoluble tau relative to soluble recombinant tau. Immunostaining with TRC35 labels a wide variety of pathological tau lesions in animal models of tauopathy, which are reduced in mice lacking the RNA binding protein MSUT2. TRC-positive lesions are evident in many human tauopathies including Alzheimer's disease, progressive supranuclear palsy, corticobasal degeneration and Pick's disease. We also identified ocular pharyngeal muscular dystrophy as a novel tauopathy disorder, where loss of function in the poly(A) RNA binding protein (PABPN1) causes accumulation of pathological tau in tissue from post-mortem human brain. Tau/RNA binding drives tau conformational change and aggregation inhibiting tau-mediated microtubule assembly. Our findings implicate cellular tau/RNA interactions as modulators of both normal tau function and pathological tau toxicity in tauopathy disorders and suggest feasibility for novel therapeutic approaches targeting TRCs.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Tauopathies , Humans , Mice , Animals , tau Proteins/metabolism , Alzheimer Disease/pathology , RNA/metabolism , Neurodegenerative Diseases/pathology , Detergents/metabolism , Polymerization , Tauopathies/pathology , Brain/pathology , RNA, Messenger/metabolism , Caenorhabditis elegans/metabolism , Microtubules/metabolism , Poly(A)-Binding Protein I/metabolism
3.
Acta Neuropathol Commun ; 9(1): 117, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34187600

ABSTRACT

Several conserved nuclear RNA binding proteins (sut-1, sut-2, and parn-2) control tau aggregation and toxicity in C. elegans, mice, and human cells. MSUT2 protein normally resides in nuclear speckles, membraneless organelles composed of phase-separated RNAs and RNA-binding proteins that mediate critical steps in mRNA processing including mRNA splicing. We used human pathological tissue and transgenic mice to identify Alzheimer's disease-specific cellular changes related to nuclear speckles. We observed that nuclear speckle constituent scaffold protein SRRM2 is mislocalized and accumulates in cytoplasmic lesions in AD brain tissue. Furthermore, progression of tauopathy in transgenic mice is accompanied by increasing mislocalization of SRRM2 from the neuronal nucleus to the soma. In AD brain tissue, SRRM2 mislocalization associates with increased severity of pathological tau deposition. These findings suggest potential mechanisms by which pathological tau impacts nuclear speckle function in diverse organisms ranging from C. elegans to mice to humans. Future translational studies aimed at restoring nuclear speckle homeostasis may provide novel candidate therapeutic targets for pharmacological intervention.


Subject(s)
Alzheimer Disease/pathology , Neurons/pathology , Nuclear Speckles/pathology , RNA-Binding Proteins/metabolism , tau Proteins/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Animals , Brain/metabolism , Brain/pathology , Cytoplasm/metabolism , Cytoplasm/pathology , Female , Humans , Male , Mice , Mice, Transgenic , Middle Aged , Neurons/metabolism , Nuclear Speckles/metabolism
4.
Neurobiol Dis ; 147: 105148, 2021 01.
Article in English | MEDLINE | ID: mdl-33184027

ABSTRACT

Aging drives pathological accumulation of proteins such as tau, causing neurodegenerative dementia disorders like Alzheimer's disease. Previously we showed loss of function mutations in the gene encoding the poly(A) RNA binding protein SUT-2/MSUT2 suppress tau-mediated neurotoxicity in C. elegans neurons, cultured human cells, and mouse brain, while loss of PABPN1 had the opposite effect (Wheeler et al., 2019). Here we found that blocking poly(A) tail extension with cordycepin exacerbates tauopathy in cultured human cells, which is rescued by MSUT2 knockdown. To further investigate the molecular mechanisms of poly(A) RNA-mediated tauopathy suppression, we examined whether genes encoding poly(A) nucleases also modulated tauopathy in a C. elegans tauopathy model. We found that loss of function mutations in C. elegans ccr-4 and panl-2 genes enhanced tauopathy phenotypes in tau transgenic C. elegans while loss of parn-2 partially suppressed tauopathy. In addition, loss of parn-1 blocked tauopathy suppression by loss of parn-2. Epistasis analysis showed that sut-2 loss of function suppressed the tauopathy enhancement caused by loss of ccr-4 and SUT-2 overexpression exacerbated tauopathy even in the presence of parn-2 loss of function in tau transgenic C. elegans. Thus sut-2 modulation of tauopathy is epistatic to ccr-4 and parn-2. We found that human deadenylases do not colocalize with human MSUT2 in nuclear speckles; however, expression levels of TOE1, the homolog of parn-2, correlated with that of MSUT2 in post-mortem Alzheimer's disease patient brains. Alzheimer's disease patients with low TOE1 levels exhibited significantly increased pathological tau deposition and loss of NeuN staining. Taken together, this work suggests suppressing tauopathy cannot be accomplished by simply extending poly(A) tails, but rather a more complex relationship exists between tau, sut-2/MSUT2 function, and control of poly(A) RNA metabolism, and that parn-2/TOE1 may be altered in tauopathy in a similar way.


Subject(s)
Alzheimer Disease/pathology , Caenorhabditis elegans Proteins/metabolism , Exoribonucleases/metabolism , Nuclear Proteins/metabolism , Poly(A)-Binding Proteins/metabolism , Tauopathies/pathology , Alzheimer Disease/metabolism , Animals , Animals, Genetically Modified , Brain/metabolism , Brain/pathology , Caenorhabditis elegans , Humans , Phenotype , Tauopathies/metabolism
5.
PLoS Genet ; 15(12): e1008526, 2019 12.
Article in English | MEDLINE | ID: mdl-31834878

ABSTRACT

Pathological phosphorylated TDP-43 protein (pTDP) deposition drives neurodegeneration in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP). However, the cellular and genetic mechanisms at work in pathological TDP-43 toxicity are not fully elucidated. To identify genetic modifiers of TDP-43 neurotoxicity, we utilized a Caenorhabditis elegans model of TDP-43 proteinopathy expressing human mutant TDP-43 pan-neuronally (TDP-43 tg). In TDP-43 tg C. elegans, we conducted a genome-wide RNAi screen covering 16,767 C. elegans genes for loss of function genetic suppressors of TDP-43-driven motor dysfunction. We identified 46 candidate genes that when knocked down partially ameliorate TDP-43 related phenotypes; 24 of these candidate genes have conserved homologs in the human genome. To rigorously validate the RNAi findings, we crossed the TDP-43 transgene into the background of homozygous strong genetic loss of function mutations. We have confirmed 9 of the 24 candidate genes significantly modulate TDP-43 transgenic phenotypes. Among the validated genes we focused on, one of the most consistent genetic modifier genes protecting against pTDP accumulation and motor deficits was the heparan sulfate-modifying enzyme hse-5, the C. elegans homolog of glucuronic acid epimerase (GLCE). We found that knockdown of human GLCE in cultured human cells protects against oxidative stress induced pTDP accumulation. Furthermore, expression of glucuronic acid epimerase is significantly decreased in the brains of FTLD-TDP cases relative to normal controls, demonstrating the potential disease relevance of the candidate genes identified. Taken together these findings nominate glucuronic acid epimerase as a novel candidate therapeutic target for TDP-43 proteinopathies including ALS and FTLD-TDP.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Carbohydrate Epimerases/genetics , DNA-Binding Proteins/genetics , TDP-43 Proteinopathies/genetics , Animals , Animals, Genetically Modified , Autopsy , Brain/metabolism , Caenorhabditis elegans , Caenorhabditis elegans Proteins/metabolism , Carbohydrate Epimerases/metabolism , Cell Line , DNA-Binding Proteins/metabolism , Disease Models, Animal , Down-Regulation , Gene Knockdown Techniques , HEK293 Cells , Humans , RNA Interference , Reverse Genetics , TDP-43 Proteinopathies/metabolism
6.
FEBS J ; 286(13): 2434-2446, 2019 07.
Article in English | MEDLINE | ID: mdl-31034749

ABSTRACT

A number of neurodegenerative diseases are characterized by deposition of abnormally phosphorylated tau or TDP-43 in disease-affected neurons. These diseases include Alzheimer's disease, frontotemporal lobar degeneration, and amyotrophic lateral sclerosis. No disease-modifying therapeutics is available to treat these disorders, and we have a limited understanding of the cellular and molecular factors integral to disease initiation or progression. Phosphorylated tau and TDP-43 are important markers of pathology in dementia disorders and directly contribute to tau- and TDP-43-related neurotoxicity and neurodegeneration. Here, we review the scope of tau and TDP-43 phosphorylation in neurodegenerative disease and discuss recent work demonstrating the kinases TTBK1 and TTBK2 phosphorylate both tau and TDP-43, promoting neurodegeneration.


Subject(s)
Protein Serine-Threonine Kinases/metabolism , TDP-43 Proteinopathies/metabolism , Animals , Brain/metabolism , Brain/pathology , Humans , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , TDP-43 Proteinopathies/pathology
7.
Mol Neurodegener ; 13(1): 7, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29409526

ABSTRACT

BACKGROUND: Progressive neuron loss in the frontal and temporal lobes of the cerebral cortex typifies frontotemporal lobar degeneration (FTLD). FTLD sub types are classified on the basis of neuronal aggregated protein deposits, typically containing either aberrantly phosphorylated TDP-43 or tau. Our recent work demonstrated that tau tubulin kinases 1 and 2 (TTBK1/2) robustly phosphorylate TDP-43 and co-localize with phosphorylated TDP-43 in human postmortem neurons from FTLD patients. Both TTBK1 and TTBK2 were initially identified as tau kinases and TTBK1 has been shown to phosphorylate tau epitopes commonly observed in Alzheimer's disease and other tauopathies. METHODS: To further elucidate how TTBK1/2 activity contributes to both TDP-43 and tau phosphorylation in the context of the neurodegeneration seen in FTLD, we examined the consequences of elevated human TTBK1/2 kinase expression in transgenic animal models of disease. RESULTS: We show that C. elegans co-expressing tau/TTBK1 tau/TTBK2, or TDP-43/TTBK1 transgenes in combination exhibit synergistic exacerbation of behavioral abnormalities and increased pathological protein phosphorylation. We also show that C. elegans co-expressing tau/TTBK1 or tau/TTBK2 transgenes in combination exhibit aberrant neuronal architecture and neuron loss. Surprisingly, the TTBK2/TDP-43 transgenic combination showed no exacerbation of TDP-43 proteinopathy related phenotypes. Additionally, we observed elevated TTBK1/2 protein expression in cortical and hippocampal neurons of FTLD-tau and FTLD-TDP cases relative to normal controls. CONCLUSIONS: Our findings suggest a possible etiology for the two most common FTLD subtypes through a kinase activation driven mechanism of neurodegeneration.


Subject(s)
Brain/pathology , Frontotemporal Lobar Degeneration , Nerve Degeneration/pathology , Protein Serine-Threonine Kinases/metabolism , Animals , Animals, Genetically Modified , Caenorhabditis elegans , DNA-Binding Proteins/metabolism , Frontotemporal Lobar Degeneration/metabolism , Frontotemporal Lobar Degeneration/pathology , Humans , Mice , Nerve Degeneration/metabolism , Phosphorylation , tau Proteins/metabolism
8.
Acta Neuropathol ; 132(4): 545-61, 2016 10.
Article in English | MEDLINE | ID: mdl-27473149

ABSTRACT

Detergent insoluble inclusions of TDP-43 protein are hallmarks of the neuropathology in over 90 % of amyotrophic lateral sclerosis (ALS) cases and approximately half of frontotemporal dementia (FTLD-TDP) cases. In TDP-43 proteinopathy disorders, lesions containing aggregated TDP-43 protein are extensively post-translationally modified, with phosphorylated TDP-43 (pTDP) being the most consistent and robust marker of pathological TDP-43 deposition. Abnormally phosphorylated TDP-43 has been hypothesized to mediate TDP-43 toxicity in many neurodegenerative disease models. To date, several different kinases have been implicated in the genesis of pTDP, but no phosphatases have been shown to reverse pathological TDP-43 phosphorylation. We have identified the phosphatase calcineurin as an enzyme binding to and catalyzing the removal of pathological C-terminal phosphorylation of TDP-43 in vitro. In C. elegans models of TDP-43 proteinopathy, genetic elimination of calcineurin results in accumulation of excess pTDP, exacerbated motor dysfunction, and accelerated neurodegenerative changes. In cultured human cells, treatment with FK506 (tacrolimus), a calcineurin inhibitor, results in accumulation of pTDP species. Lastly, calcineurin co-localizes with pTDP in degenerating areas of the central nervous system in subjects with FTLD-TDP and ALS. Taken together, these findings suggest calcineurin acts on pTDP as a phosphatase in neurons. Furthermore, patient treatment with calcineurin inhibitors may have unappreciated adverse neuropathological consequences.


Subject(s)
Calcineurin/metabolism , Phosphoric Monoester Hydrolases/metabolism , TDP-43 Proteinopathies/metabolism , Animals , Brain/metabolism , Brain/pathology , Caenorhabditis elegans , DNA-Binding Proteins/metabolism , Inclusion Bodies/pathology , Neurons/metabolism , Neurons/pathology , Phosphorylation , TDP-43 Proteinopathies/pathology
9.
Acta Neuropathol Commun ; 3: 33, 2015 Jun 04.
Article in English | MEDLINE | ID: mdl-26041339

ABSTRACT

INTRODUCTION: Accumulation of insoluble conformationally altered hyperphosphorylated tau occurs as part of the pathogenic process in Alzheimer's disease (AD) and other tauopathies. In most AD subjects, wild-type (WT) tau aggregates and accumulates in neurofibrillary tangles and dystrophic neurites in the brain; however, in some familial tauopathy disorders, mutations in the gene encoding tau cause disease. RESULTS: We generated a mouse model, Tau4RTg2652, that expresses high levels of normal human tau in neurons resulting in the early stages of tau pathology. In this model, over expression of WT human tau drives pre-tangle pathology in young mice resulting in behavioral deficits. These changes occur at a relatively young age and recapitulate early pre-tangle stages of tau pathology associated with AD and mild cognitive impairment. Several features distinguish the Tau4RTg2652 model of tauopathy from previously described tau transgenic mice. Unlike other mouse models where behavioral and neuropathologic changes are induced by transgenic tau harboring MAPT mutations pathogenic for frontotemporal lobar degeneration (FTLD), the mice described here express the normal tau sequence. CONCLUSIONS: Features of Tau4RTg2652 mice distinguishing them from other established wild type tau overexpressing mice include very early phenotypic manifestations, non-progressive tau pathology, abundant pre-tangle and phosphorylated tau, sparse oligomeric tau species, undetectable fibrillar tau pathology, stability of tau transgene copy number/expression, and normal lifespan. These results suggest that Tau4RTg2652 animals may facilitate studies of tauopathy target engagement where WT tau is driving tauopathy phenotypes.


Subject(s)
Cognition Disorders/etiology , DNA Copy Number Variations/genetics , Neurofibrillary Tangles/pathology , Tauopathies/complications , tau Proteins/genetics , Age Factors , Analysis of Variance , Animals , Brain/metabolism , Brain/pathology , Disease Progression , Electroencephalography , Exploratory Behavior/physiology , Humans , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Activity/genetics , Muscle Strength/genetics , Neurofibrillary Tangles/genetics , Neurofibrillary Tangles/metabolism , Tauopathies/genetics
10.
PLoS Genet ; 10(12): e1004803, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25473830

ABSTRACT

Pathological aggregates of phosphorylated TDP-43 characterize amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP), two devastating groups of neurodegenerative disease. Kinase hyperactivity may be a consistent feature of ALS and FTLD-TDP, as phosphorylated TDP-43 is not observed in the absence of neurodegeneration. By examining changes in TDP-43 phosphorylation state, we have identified kinases controlling TDP-43 phosphorylation in a C. elegans model of ALS. In this kinome-wide survey, we identified homologs of the tau tubulin kinases 1 and 2 (TTBK1 and TTBK2), which were also identified in a prior screen for kinase modifiers of TDP-43 behavioral phenotypes. Using refined methodology, we demonstrate TTBK1 and TTBK2 directly phosphorylate TDP-43 in vitro and promote TDP-43 phosphorylation in mammalian cultured cells. TTBK1/2 overexpression drives phosphorylation and relocalization of TDP-43 from the nucleus to cytoplasmic inclusions reminiscent of neuropathologic changes in disease states. Furthermore, protein levels of TTBK1 and TTBK2 are increased in frontal cortex of FTLD-TDP patients, and TTBK1 and TTBK2 co-localize with TDP-43 inclusions in ALS spinal cord. These kinases may represent attractive targets for therapeutic intervention for TDP-43 proteinopathies such as ALS and FTLD-TDP.


Subject(s)
DNA-Binding Proteins/metabolism , Protein Serine-Threonine Kinases/physiology , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , Animals, Genetically Modified , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Cells, Cultured , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/metabolism , Gene Expression Profiling , HEK293 Cells , Humans , Mice , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Proteolysis , RNA Interference
11.
PLoS One ; 9(9): e108034, 2014.
Article in English | MEDLINE | ID: mdl-25251220

ABSTRACT

Traumatic brain injury (TBI) in its various forms has emerged as a major problem for modern society. Acute TBI can transform into a chronic condition and be a risk factor for neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, probably through induction of oxidative stress and neuroinflammation. Here, we examined the ability of the antioxidant molecular hydrogen given in drinking water (molecular hydrogen water; mHW) to alter the acute changes induced by controlled cortical impact (CCI), a commonly used experimental model of TBI. We found that mHW reversed CCI-induced edema by about half, completely blocked pathological tau expression, accentuated an early increase seen in several cytokines but attenuated that increase by day 7, reversed changes seen in the protein levels of aquaporin-4, HIF-1, MMP-2, and MMP-9, but not for amyloid beta peptide 1-40 or 1-42. Treatment with mHW also reversed the increase seen 4 h after CCI in gene expression related to oxidation/carbohydrate metabolism, cytokine release, leukocyte or cell migration, cytokine transport, ATP and nucleotide binding. Finally, we found that mHW preserved or increased ATP levels and propose a new mechanism for mHW, that of ATP production through the Jagendorf reaction. These results show that molecular hydrogen given in drinking water reverses many of the sequelae of CCI and suggests that it could be an easily administered, highly effective treatment for TBI.


Subject(s)
Antioxidants/therapeutic use , Brain Edema/drug therapy , Brain Injuries/drug therapy , Drinking Water , Hydrogen/therapeutic use , Neuroprotective Agents/therapeutic use , Animals , Antioxidants/metabolism , Brain/drug effects , Brain/pathology , Brain Edema/blood , Brain Edema/etiology , Brain Edema/pathology , Brain Injuries/blood , Brain Injuries/complications , Brain Injuries/pathology , Cytokines/analysis , Cytokines/blood , Drinking Water/metabolism , Gene Expression Regulation/drug effects , Hydrogen/metabolism , Male , Mice, Inbred C57BL , Neuroprotective Agents/metabolism
12.
Ann Neurol ; 74(1): 39-52, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23424178

ABSTRACT

OBJECTIVE: Kinase hyperactivity occurs in both neurodegenerative disease and cancer. Lesions containing hyperphosphorylated aggregated TDP-43 characterize amyotrophic lateral sclerosis and frontotemporal lobar degeneration with TDP-43 inclusions. Dual phosphorylation of TDP-43 at serines 409/410 (S409/410) drives neurotoxicity in disease models; therefore, TDP-43-specific kinases are candidate targets for intervention. METHODS: To find therapeutic targets for the prevention of TDP-43 phosphorylation, we assembled and screened a comprehensive RNA interference library targeting kinases in TDP-43 transgenic Caenorhabditis elegans. RESULTS: We show CDC7 robustly phosphorylates TDP-43 at pathological residues S409/410 in C. elegans, in vitro, and in human cell culture. In frontotemporal lobar degeneration (FTLD)-TDP cases, CDC7 immunostaining overlaps with the phospho-TDP-43 pathology found in frontal cortex. Furthermore, PHA767491, a small molecule inhibitor of CDC7, reduces TDP-43 phosphorylation and prevents TDP-43-dependent neurodegeneration in TDP-43-transgenic animals. INTERPRETATION: Taken together, these data support CDC7 as a novel therapeutic target for TDP-43 proteinopathies, including FTLD-TDP and amyotrophic lateral sclerosis.


Subject(s)
Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , Neurodegenerative Diseases/etiology , Protein Serine-Threonine Kinases/metabolism , TDP-43 Proteinopathies/therapy , Animals , Animals, Genetically Modified , Caenorhabditis elegans , Caenorhabditis elegans Proteins/genetics , Cell Line, Transformed , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Frontal Lobe/metabolism , Frontal Lobe/pathology , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Humans , Movement/physiology , Mutation/genetics , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Phosphorylation , Piperidones/pharmacology , Pyrroles/pharmacology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Serine/metabolism , TDP-43 Proteinopathies/complications , TDP-43 Proteinopathies/drug therapy , TDP-43 Proteinopathies/genetics , Transfection
13.
J Neuropathol Exp Neurol ; 70(11): 1006-19, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22002427

ABSTRACT

Proteolytic cleavage of tau at glutamic acid 391 (E391) is linked to the pathogenesis of Alzheimer disease (AD). This C-terminal-truncated tau species exists in neurofibrillary tangles and abnormal neurites in the brains of AD patients and may potentiate tau polymerization. We generated a mouse model that expresses human tau truncated at E391 to begin to elucidate the role of this C-terminal-truncated tau species in the development of tau pathology. Our results show that truncated but otherwise wild-type human tau is sufficient to drive pretangle pathologic changes in tau, including accumulation of insoluble tau, somatodendritic redistribution, formation of pathologic conformations, and dual phosphorylation of tau at sites associated with AD pathology. In addition, these mice exhibit atypical neuritic tau immunoreactivity, including abnormal neuritic processes and dystrophic neurites. These results suggest that changes in tau proteolysis can initiate tauopathy.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/pathology , Brain/pathology , Glutamic Acid/genetics , Mutation/genetics , tau Proteins/genetics , Adenosine Triphosphatases/metabolism , Animals , Brain/metabolism , Cation Transport Proteins/metabolism , Copper-Transporting ATPases , Disease Models, Animal , Gene Expression Regulation/genetics , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/metabolism , Neurons/pathology , Phosphorylation , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , tau Proteins/metabolism
14.
Brain Res ; 1373: 240-52, 2011 Feb 10.
Article in English | MEDLINE | ID: mdl-21147074

ABSTRACT

In Parkinson's disease (PD), there is a significant loss of noradrenergic neurons in the locus coeruleus (LC) in addition to the loss of dopaminergic neurons in the substantia nigra (SN). The goal of this study was to determine if the surviving LC noradrenergic neurons in PD demonstrate compensatory changes in response to the neuronal loss, as observed in Alzheimer's disease (AD). Tyrosine hydroxylase (TH) and dopamine ß-hydroxylase (DBH) mRNA expression in postmortem LC tissue of control and age-matched PD subjects demonstrated a significant reduction in the number of noradrenergic neurons in the LC of PD subjects. TH mRNA expression/neuron did not differ between control and PD subjects, but DBH mRNA expression/neuron was significantly elevated in PD subjects compared to control. This increase in DBH mRNA expression in PD subjects is not a response to neuronal loss because the amount of DBH mRNA expression/neuron in AD subjects was not significantly different from control. Norepinephrine transporter (NET) binding site concentration in the LC of PD subjects was significantly reduced over the cell body region as well as the peri-LC dendritic zone. In PD subjects, the loss of dendrites from surviving noradrenergic neurons was also apparent with TH-immunoreactivity (IR). This loss of LC dendritic innervation in PD subjects as measured by TH-IR was not due to LC neuronal loss because TH-IR in AD subjects was robust, despite a similar loss of LC neurons. These data suggest that there is a differential response of the noradrenergic nervous system in PD compared to AD in response to the loss of LC neurons.


Subject(s)
Alzheimer Disease/pathology , Locus Coeruleus/pathology , Neurons/physiology , Parkinson Disease/pathology , Aged , Aged, 80 and over , Binding Sites/drug effects , Binding Sites/physiology , Cell Count/methods , Dopamine beta-Hydroxylase/genetics , Dopamine beta-Hydroxylase/metabolism , Female , Fluoxetine/analogs & derivatives , Fluoxetine/pharmacokinetics , Humans , Male , Middle Aged , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Protein Binding/drug effects , RNA, Messenger/metabolism , Tritium/pharmacokinetics , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism
15.
Alzheimers Res Ther ; 2(5): 26, 2010 Sep 17.
Article in English | MEDLINE | ID: mdl-20854651

ABSTRACT

Recent clinical evidence suggests that Alzheimer disease (AD), Parkinson disease (PD), and dementia with Lewy bodies (DLB), though distinct neurological disorders, have some common pathological features that may have an impact on the clinical characteristics of these diseases. However, the question of whether these disorders have a common pathophysiology remains. Clinton and colleagues recently reported a mouse model that exhibits the combined pathologies of AD, PD, and DLB, a finding that may shed some light on this issue. Using this mouse model, the authors demonstrate that the pathogenic proteins amyloid beta, tau, and alpha-synuclein interact synergistically to enhance the accumulation of one another and accelerate cognitive decline. These data indicate shared pathogenic mechanisms and suggest the possibility that therapeutic interventions successfully targeting one of these pathogenic proteins have implications for a number of related neurodegenerative disorders.

16.
Brain Pathol ; 17(2): 139-45, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17388944

ABSTRACT

Lewy body (LB) inclusions are one of the pathological hallmarks of Parkinson's disease (PD) and dementia with Lewy bodies (DLB). One way to better understand the process leading to LB formation and associated pathogenesis responsible for neurodegeneration in PD and DLB is to examine the content of LB inclusions. Here, we performed a proteomic investigation of cortical LBs, obtained by laser capture microdissection from neurons in the temporal cortex of dementia patients with cortical LB disease. Analysis of over 2500 cortical LBs discovered 296 proteins; of those, 17 had been associated previously with brainstem and/or cortical LBs. We validated several proteins with immunohistochemical staining followed by confocal microscopy. The results demonstrated that heat shock cognate 71 kDa protein (also known as HSC70, HSP73, or HSPA10) was indeed not only colocalized with the majority of LBs in the temporal cortex but also colocalized to LBs in the frontal cortex of patients with diffuse LB disease. Our investigation represents the first extensive proteomic investigation of cortical LBs, and it is expected that characterization of the proteins in the cortical LBs may reveal novel mechanisms by which LB forms and pathways leading to neurodegeneration in DLB and/or advanced PD. Further investigation of these novel candidates is also necessary to ensure that the potential proteins in cortical LBs are not identified incorrectly because of incomplete current human protein database.


Subject(s)
Brain/metabolism , Lewy Bodies/chemistry , Lewy Body Disease/metabolism , Parkinson Disease/metabolism , Aged , Brain/pathology , HSC70 Heat-Shock Proteins/metabolism , Humans , Immunohistochemistry , Lasers , Lewy Bodies/metabolism , Lewy Body Disease/pathology , Microdissection , Microscopy, Confocal , Neurons/chemistry , Neurons/metabolism , Neurons/pathology , Parkinson Disease/pathology , Proteomics
17.
Exp Neurol ; 199(2): 265-73, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16515786

ABSTRACT

The thiazolidinediones, such as rosiglitazone, increase peripheral insulin sensitivity and their use is proposed for the treatment of Alzheimer's disease. However, the mechanisms underlying the potential beneficial effects of rosiglitazone in Alzheimer's disease remain unclear. In previous studies, we observed that Tg2576 Alzheimer mice develop peripheral insulin resistance with age and have much higher serum corticosterone levels than wild-type mice when fasted overnight. We further showed that both of these defects can be ameliorated by rosiglitazone administration. Here, we report that during behavioral testing which involves repetitive overnight fasting, Tg2576 mice administered rosiglitazone exhibited better spatial learning and memory abilities and had lower serum corticosterone levels than untreated Tg2576 mice. When untreated Tg2576 mice were administered metyrapone, a drug that blocks glucocorticoid production, their spatial learning and memory abilities and serum corticosterone levels were similar to those of rosiglitazone-treated mice. We further report here that rosiglitazone attenuated reductions in insulin-degrading enzyme (IDE) mRNA and activity, and reduced amyloid beta-peptide (Abeta)42 levels without affecting amyloid deposition, in the brains of Tg2576 mice. These results demonstrate that rosiglitazone attenuates learning and memory deficits in Tg2576 mice and suggest that the effects of the drug on learning and memory, brain IDE levels, and brain Abeta42 levels in the mice may be due to its glucocorticoid-lowering actions.


Subject(s)
Fibrinolytic Agents/therapeutic use , Learning Disabilities/drug therapy , Memory Disorders/drug therapy , Thiazolidinediones/therapeutic use , Age Factors , Alzheimer Disease/blood , Alzheimer Disease/complications , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Analysis of Variance , Animals , Behavior, Animal , Corticosterone/blood , Disease Models, Animal , Enzyme Inhibitors/administration & dosage , Enzyme-Linked Immunosorbent Assay/methods , In Situ Hybridization/methods , Insulysin/genetics , Insulysin/metabolism , Learning Disabilities/blood , Learning Disabilities/etiology , Male , Memory Disorders/blood , Memory Disorders/etiology , Metyrapone/administration & dosage , Mice , Mice, Transgenic , Rosiglitazone
18.
J Neuropathol Exp Neurol ; 64(2): 139-46, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15751228

ABSTRACT

Insulin-degrading enzyme (IDE) has been identified as a candidate protease in the clearance of amyloid-delta (Abeta) peptides from the brain. IDE activity and binding to insulin are known to be inhibited by glucocorticoids in vitro. In Alzheimer disease (AD), both a decrease in IDE levels and an increase in peripheral glucocorticoid levels have been documented. Our study investigated the effects of glucocorticoid treatment on IDE expression in vivo in 12 nonhuman primates (Macaca nemestrina). Year-long, high-dose exposure to the glucocorticoid cortisol (hydrocortisone acetate) was associated with reduced IDE protein levels in the inferior frontal cortex and reduced IDE mRNA levels in the dentate gyrus of the hippocampus. We assessed Abeta40 and Abeta42 levels by ELISA in the brain and in plasma, total plaque burden by immunohistochemistry, and relative Abeta1-40 and Abeta1-42 levels in the brain by mass spectrometry. Glucocorticoid treatment increased Abeta42 relative to Abeta40 levels without a change in overall plaque burden within the brain, while Abeta42 levels were decreased in plasma. These findings support the notion that glucocorticoids regulate IDE and provide a mechanism whereby increased glucocorticoid levels may contribute to AD pathology.


Subject(s)
Aging , Amyloid beta-Peptides/drug effects , Brain/drug effects , Glucocorticoids/pharmacology , Insulysin/drug effects , Peptide Fragments/drug effects , Amyloid beta-Peptides/blood , Animals , Blotting, Western , Brain/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Immunohistochemistry , In Situ Hybridization , Macaca , Male , Peptide Fragments/blood , RNA, Messenger/analysis , RNA, Messenger/drug effects
19.
J Neurochem ; 91(4): 843-51, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15525338

ABSTRACT

Glucocorticoids regulate plasticity and survival of hippocampal neurons. Aberrant exposure to this steroid hormone can result in neurodegeneration, perhaps secondary to disruption of calcium homeostasis. Calbindin, a calcium-binding protein that buffers excess calcium, may protect against neurodegeneration resulting from overabundance of intracellular calcium. In this study, we examined whether chronic treatment (1 year) with cortisol enhances hippocampal calbindin expression in primates. Calbindin is a marker for inhibitory neurons and the dentate gyrus is known to adopt an inhibitory phenotype in response to extreme conditions such as seizures. Thus, we hypothesized that chronic cortisol exposure may also promote a GABAergic phenotype. Therefore, we examined the expression of the GABA-synthesizing enzyme glutamic acid decarboxylase. The expression of brain-derived neurotrophic factor, which is responsive to glucocorticoids, was also examined. Our results demonstrate significant increases in calbindin, glutamic acid decarboxylase and brain-derived neurotrophic factor in several regions of the primate hippocampus, including the dentate gyrus and CA3, in response to chronic cortisol exposure. These results suggest that chronic cortisol exposure may shift the balance towards a GABAergic phenotype, perhaps as part of a compensatory feedback mechanism to dampen the initial excitatory effects of glucocorticoids in the hippocampus.


Subject(s)
Hippocampus/drug effects , Hippocampus/metabolism , Hydrocortisone/pharmacology , S100 Calcium Binding Protein G/metabolism , gamma-Aminobutyric Acid/metabolism , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Calbindin 2 , Calbindins , Dentate Gyrus/drug effects , Dentate Gyrus/metabolism , Female , Glutamate Decarboxylase/metabolism , Macaca nemestrina , Male , Parvalbumins/biosynthesis , Phenotype , RNA, Messenger/metabolism , S100 Calcium Binding Protein G/biosynthesis , S100 Calcium Binding Protein G/genetics , Time
20.
Neurobiol Aging ; 25(10): 1309-14, 2004.
Article in English | MEDLINE | ID: mdl-15465628

ABSTRACT

Increased galanin (GAL) may be associated with the cognitive deficits characteristic of Alzheimer's disease (AD). However, both increased and decreased GAL receptor density has been reported in AD brain. Previous studies indicate pre-treatment with guanine nucleotides displaces endogenous GAL from GAL receptors (GALR), providing an indirect measurement of GALR occupancy. In addition, pre-treatment with guanine nucleotides may provide a more accurate measurement of GALR density since it would avoid the masking of GALRs by residual binding of endogenous GAL. Thus, in the present study, we examined the influence of pre-treatment with guanine nucleotides on 125I-GAL binding in multiple regions of normal and AD brain. Our results indicate that GTP pre-treatment enhances GAL binding in specific regions in normal and AD brain. In addition, our results suggest an increase in the number of GALRs occupied by endogenous GAL in the deep layers of the frontal cortex and the lateral hypothalamus of AD subjects compared to normal subjects. The regional differences in GALR density and receptor occupancy between normal and AD subjects may play a role in the cognitive disturbances associated with the disease.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Receptors, Galanin/metabolism , Aged , Biomarkers/metabolism , Brain/drug effects , Female , Guanosine Triphosphate/pharmacology , Humans , Male , Middle Aged , Tissue Distribution/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...