Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nutr Diabetes ; 4: e108, 2014 Feb 24.
Article in English | MEDLINE | ID: mdl-24567123

ABSTRACT

BACKGROUND: Obesity is associated with reduced levels of circulating high-density lipoproteins (HDLs) and its major protein, apolipoprotein (apo) A-I. As a result of the role of HDL and apoA-I in cellular lipid transport, low HDL and apoA-I may contribute directly to establishing or maintaining the obese condition. METHODS: To test this, male C57BL/6 wild-type (WT), apoA-I deficient (apoA-I(-/-)) and apoA-I transgenic (apoA-I(tg/tg)) mice were fed obesogenic diets (ODs) and monitored for several clinical parameters. We also performed cell culture studies. RESULTS: ApoA-I(-/-) mice gained significantly more body weight and body fat than WT mice over 20 weeks despite their reduced food intake. During a caloric restriction regime imposed on OD-fed mice, apoA-I deficiency significantly inhibited the loss of body fat as compared with WT mice. Reduced body fat loss with caloric restriction in apoA-I(-/-) mice was associated with blunted stimulated adipose tissue lipolysis as verified by decreased levels of phosphorylated hormone-sensitive lipase (p-HSL) and lipolytic enzyme mRNA. In contrast to apoA-I(-/-) mice, apoA-I(tg/tg) mice gained relatively less weight than WT mice, consistent with other reports. ApoA-I(tg/tg) mice showed increased adipose tissue lipolysis, verified by increased levels of p-HSL and lipolytic enzyme mRNA. In cell culture studies, HDL and apoA-I specifically increased catecholamine-induced lipolysis possibly through modulating the adipocyte plasma membrane cholesterol content. CONCLUSIONS: Thus, apoA-I and HDL contribute to modulating body fat content by controlling the extent of lipolysis. ApoA-I and HDL are key components of lipid metabolism in adipose tissue and constitute new therapeutic targets in obesity.

2.
Nutr Diabetes ; 3: e79, 2013 Jun 24.
Article in English | MEDLINE | ID: mdl-23797386

ABSTRACT

BACKGROUND: Obesity has become an epidemic in many countries and is supporting a billion dollar industry involved in promoting weight loss through diet, exercise and surgical procedures. Because of difficulties in maintaining body weight reduction, a pattern of weight cycling often occurs (so called 'yo-yo' dieting) that may result in deleterious outcomes to health. There is controversy about cardiovascular benefits of yo-yo dieting, and an animal model is needed to better understand the contributions of major diet and body weight changes on heart and vascular functions. Our purpose is to determine the effects of weight cycling on cardiac function and atherosclerosis development in a mouse model. METHODS: We used low-density lipoprotein receptor-deficient mice due to their sensitivity to metabolic syndrome and cardiovascular diseases when fed high-fat diets. Alternating ad libitum feeding of high-fat and low-fat (rodent chow) diets was used to instigate weight cycling during a 29-week period. Glucose tolerance and insulin sensitivity tests were done at 22 and 24 weeks, echocardiograms at 25 weeks and atherosclerosis and plasma lipoproteins assessed at 29 weeks. RESULTS: Mice subjected to weight cycling showed improvements in glucose homeostasis during the weight loss cycle. Weight-cycled mice showed a reduction in the severity of atherosclerosis as compared with high-fat diet-fed mice. However, atherosclerosis still persisted in weight-cycled mice as compared with mice fed rodent chow. Cardiac function was impaired in weight-cycled mice and matched with that of mice fed only the high-fat diet. CONCLUSION: This model provides an initial structure in which to begin detailed studies of diet, calorie restriction and surgical modifications on energy balance and metabolic diseases. This model also shows differential effects of yo-yo dieting on metabolic syndrome and cardiovascular diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...