Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
mSystems ; 8(3): e0148721, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37212579

ABSTRACT

Plant-associated microbial assemblages are known to shift at time scales aligned with plant phenology, as influenced by the changes in plant-derived nutrient concentrations and abiotic conditions observed over a growing season. But these same factors can change dramatically in a sub-24-hour period, and it is poorly understood how such diel cycling may influence plant-associated microbiomes. Plants respond to the change from day to night via mechanisms collectively referred to as the internal "clock," and clock phenotypes are associated with shifts in rhizosphere exudates and other changes that we hypothesize could affect rhizosphere microbes. The mustard Boechera stricta has wild populations that contain multiple clock phenotypes of either a 21- or a 24-hour cycle. We grew plants of both phenotypes (two genotypes per phenotype) in incubators that simulated natural diel cycling or that maintained constant light and temperature. Under both cycling and constant conditions, the extracted DNA concentration and the composition of rhizosphere microbial assemblages differed between time points, with daytime DNA concentrations often triple what were observed at night and microbial community composition differing by, for instance, up to 17%. While we found that plants of different genotypes were associated with variation in rhizosphere assemblages, we did not see an effect on soil conditioned by a particular host plant circadian phenotype on subsequent generations of plants. Our results suggest that rhizosphere microbiomes are dynamic at sub-24-hour periods, and those dynamics are shaped by diel cycling in host plant phenotype. IMPORTANCE We find that the rhizosphere microbiome shifts in composition and extractable DNA concentration in sub-24-hour periods as influenced by the plant host's internal clock. These results suggest that host plant clock phenotypes could be an important determinant of variation in rhizosphere microbiomes.


Subject(s)
Brassicaceae , Microbiota , Rhizosphere , Soil Microbiology , Microbiota/genetics , Phenotype , Plants
2.
Mol Ecol ; 28(7): 1801-1811, 2019 04.
Article in English | MEDLINE | ID: mdl-30582660

ABSTRACT

Rhizosphere microbes affect plant performance, including plant resistance against insect herbivores; yet, a direct comparison of the relative influence of rhizosphere microbes versus plant genetics on herbivory levels and on metabolites related to defence is lacking. In the crucifer Boechera stricta, we tested the effects of rhizosphere microbes and plant population on herbivore resistance, the primary metabolome, and select secondary metabolites. Plant populations differed significantly in the concentrations of six glucosinolates (GLS), secondary metabolites known to provide herbivore resistance in the Brassicaceae. The population with lower GLS levels experienced ~60% higher levels of aphid (Myzus persicae) attack; no association was observed between GLS and damage by a second herbivore, flea beetles (Phyllotreta cruciferae). Rhizosphere microbiome (disrupted vs. intact native microbiome) had no effect on plant GLS concentrations. However, aphid number and flea beetle damage were respectively about three- and seven-fold higher among plants grown in the disrupted versus intact native microbiome treatment. These differences may be attributable to shifts in primary metabolic pathways previously implicated in host defence against herbivores, including increases in pentose and glucoronate interconversion among plants grown with an intact microbiome. Furthermore, native microbiomes with distinct community composition (as estimated from 16s rRNA amplicon sequencing) differed two-fold in their effect on host plant susceptibility to aphids. The findings suggest that rhizosphere microbes, including distinct native microbiomes, can play a greater role than population in defence against insect herbivores, and act through metabolic mechanisms independent of population.


Subject(s)
Brassicaceae/microbiology , Glucosinolates/chemistry , Herbivory , Rhizosphere , Soil Microbiology , Animals , Aphids , Brassicaceae/chemistry , Brassicaceae/genetics , Coleoptera , Metabolome , RNA, Ribosomal, 16S/genetics , Secondary Metabolism
3.
J Biol Rhythms ; 33(3): 245-254, 2018 06.
Article in English | MEDLINE | ID: mdl-29589511

ABSTRACT

The circadian clock is a molecular timekeeper that matches endogenous rhythms in diverse traits with 24-h cycles in the external environment. Although a lack of clock resonance to the environment is detrimental to performance, clock phenotypes in wild populations nevertheless deviate substantially from the predicted optimal cycle length of 24 h, and significant genetic variation exists for circadian parameters. Here, we describe covariation between 2 traits considered to reflect adaptation to different aspects of temporal environmental heterogeneity, circadian rhythms (adaptation to daily environmental cycles) and flowering time (adaptation to seasonal cycles), in a Rocky Mountain population of the mustard Boechera stricta, a North American relative of Arabidopsis thaliana. We found that 18 families that differ in circadian period in leaf movement by 3.5 h expressed genetic diversity in first-year growth, reproductive phenology, vegetative size at reproduction, and starch concentration following vernalization. The families exhibited a large (~90-day) range in mean flowering time, even though the spatial scale of population sampling covered only a few hundred meters. Circadian period covaried with other traits such that longer-period families flowered earlier and at a larger size, a trait combination predicted to yield a fitness benefit in the wild. Circadian clock research in model systems has previously shown that mutations in clock genes influence phenology. Our results widen the scope of this research by illustrating a link between naturally segregating clock variation and reproductive phenology among wild genotypes, suggesting that the causes of genetic diversity in the clock lie partly in adaptation to seasonal environmental heterogeneity.


Subject(s)
Arabidopsis/genetics , Arabidopsis/physiology , Circadian Clocks , Circadian Rhythm , Gene Expression Regulation, Plant , Adaptation, Physiological , Arabidopsis Proteins/metabolism , Flowers/physiology , Genetic Variation , Phenotype , Photoperiod , Plant Leaves/physiology , Reproduction
SELECTION OF CITATIONS
SEARCH DETAIL
...