Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Int J Mol Sci ; 24(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36674555

ABSTRACT

Cancer cells present high levels of oxidative stress, and although an increase in reactive oxygen species (ROS), such as H2O2, can lead to apoptosis, it can also induce cell invasion and metastasis. As the increase in ROS can lead to an increase in the expression of MMP-2 and MMP-9, thus causing the degradation of the extracellular matrix, an increase in the ROS H2O2 might have an impact on MMP-2/MMP-9 activity. The natural compound curcumin has shown some anticancer effects, although its bioavailability hinders its therapeutic potential. However, curcumin and its analogues were shown to resensitize kidney cancer cells to TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. This study shows that the curcuminoid EF24 in combination with TRAIL increases peroxidase activity in the renal adenocarcinoma cell line ACHN, reducing the level of intracellular H2O2 and MMP-2/MMP-9 activity, a mechanism that is also observed after treatment with curcumin and TRAIL.


Subject(s)
Carcinoma, Renal Cell , Curcumin , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/drug therapy , Curcumin/pharmacology , TNF-Related Apoptosis-Inducing Ligand/pharmacology , TNF-Related Apoptosis-Inducing Ligand/metabolism , Hydrogen Peroxide/pharmacology , Diarylheptanoids/pharmacology , Reactive Oxygen Species/metabolism , Matrix Metalloproteinase 9/pharmacology , Matrix Metalloproteinase 2 , Cell Line, Tumor , Apoptosis , Kidney Neoplasms/drug therapy , Cell Movement
2.
Int J Mol Sci ; 23(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36076967

ABSTRACT

Targeted therapies are the most attractive options in the treatment of different tumours, including kidney cancers. Such therapies have entered a golden era due to advancements in research, breakthroughs in scientific knowledge, and a better understanding of cancer therapy mechanisms, which significantly improve the survival rates and life expectancy of patients. The use of tumour necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) as an anticancer therapy has attracted the attention of the scientific community and created great excitement due to its selectivity in targeting cancerous cells with no toxic impacts on normal tissues. However, clinical studies disappointingly showed the emergence of resistance against TRAIL. This study aimed to employ curcumin to sensitise TRAIL-resistant kidney cancerous ACHN cells, as well as to gain insight into the molecular mechanisms of TRAIL sensitization. Curcumin deregulated the expression of apoptosis-regulating micro Ribonucleic Acid (miRNAs), most notably, let-7C. Transfecting ACHN cells with a let-7C antagomir significantly increased the expression of several cell cycle protein, namely beta (ß)-catenin, cyclin dependent kinase (CDK)1/2/4/6 and cyclin B/D. Further, it overexpressed the expression of the two key glycolysis regulating proteins including hypoxia-inducible factor 1-alpha (HIF-1α) and pyruvate dehydrogenase kinase 1 (PDK1). Curcumin also suppressed the expression of the overexpressed proteins when added to the antagomir transfected cells. Overall, curcumin targeted ACHN cell cycle and cellular metabolism by promoting the differential expression of let-7C. To the best of our knowledge, this is the first study to mechanistically report the cancer chemosensitisation potential of curcumin in kidney cancer cells via induction of let-7C.


Subject(s)
Curcumin , Antagomirs , Apoptosis , Cell Cycle Proteins , Cell Line, Tumor , Curcumin/pharmacology , Humans , Kidney , TNF-Related Apoptosis-Inducing Ligand/pharmacology
3.
Molecules ; 26(20)2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34684883

ABSTRACT

The natural compound curcumin has been shown to have therapeutic potential against a wide range of diseases such as cancer. Curcumin reduces cell viability of renal cell carcinoma (RCC) cells when combined with TNF-related apoptosis-inducing ligand (TRAIL), a cytokine that specifically targets cancer cells, by helping overcome TRAIL resistance. However, the therapeutic effects of curcumin are limited by its low bioavailability. Similar compounds to curcumin with higher bioavailability, such as demethoxycurcumin (DMC) and 3,5-bis(2-fluorobenzylidene)-4-piperidone (EF24), can potentially have similar anticancer effects and show a similar synergy with TRAIL, thus reducing RCC viability. This study aims to show the effects of DMC and EF24 in combination with TRAIL at reducing ACHN cell viability and ACHN cell migration. It also shows the changes in death receptor 4 (DR4) expression after treatment with these compounds individually and in combination with TRAIL, which can play a role in their mechanism of action.


Subject(s)
Benzylidene Compounds/pharmacology , Carcinoma, Renal Cell/drug therapy , Diarylheptanoids/pharmacology , Kidney Neoplasms/drug therapy , Piperidones/pharmacology , TNF-Related Apoptosis-Inducing Ligand/administration & dosage , Apoptosis , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Cell Movement , Drug Therapy, Combination , Humans , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Tumor Cells, Cultured
4.
Biology (Basel) ; 9(5)2020 May 01.
Article in English | MEDLINE | ID: mdl-32370057

ABSTRACT

Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), is a selective anticancer cytokine capable of exerting a targeted therapy approach. Disappointingly, recent research has highlighted the development of TRAIL resistance in cancer cells, thus minimising its usefulness in clinical settings. However, several recent studies have demonstrated that cancer cells can be sensitised to TRAIL through the employment of a combinatorial approach, utilizing TRAIL in conjunction with other natural or synthetic anticancer agents. In the present study, the chemo-sensitising effect of curcumin on TRAIL-induced apoptosis in renal carcinoma cells (RCC) was investigated. The results indicate that exposure of kidney cancer ACHN cells to curcumin sensitised the cells to TRAIL, with the combination treatment of TRAIL and curcumin synergistically targeting the cancer cells without affecting the normal renal proximal tubular epithelial cells (RPTEC/TERT1) cells. Furthermore, this combination treatment was shown to induce caspase-dependent apoptosis, inhibition of the proteasome, induction of ROS, upregulation of death receptor 4 (DR4), alterations in mitogen-activated protein kinase (MAPK) signalling and induction of endoplasmic reticulum stress. An in vivo zebrafish embryo study demonstrated the effectiveness of the combinatorial regime to inhibit tumour formation without affecting zebrafish embryo viability or development. Overall, the results arising from this study demonstrate that curcumin has the ability to sensitise TRAIL-resistant ACHN cells to TRAIL-induced apoptosis.

5.
Stem Cell Res Ther ; 10(1): 329, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31744554

ABSTRACT

BACKGROUND: Renal proximal tubular epithelial cells (RPTEC) are dysfunctional in diabetic kidney disease (DKD). Mesenchymal stromal cells (MSC) may modulate DKD pathogenesis through anti-inflammatory mediators. This study aimed to investigate the pro-inflammatory effect of extended exposure to high glucose (HG) concentration on stable RPTEC monolayers and the influence of MSC on this response. METHODS: Morphologically stable human RPTEC/TERT1 cell monolayers were exposed to 5 mM and 30 mM (HG) D-glucose or to 5 mM D-glucose + 25 mM D-mannitol (MAN) for 5 days with sequential immunoassays of supernatants and end-point transcriptomic analysis by RNA sequencing. Under the same conditions, MSC-conditioned media (MSC-CM) or MSC-containing transwells were added for days 4-5. Effects of CM from HG- and MAN-exposed RPTEC/MSC co-cultures on cytokine secretion by monocyte-derived macrophages were determined. RESULTS: After 72-80 h, HG resulted in increased RPTEC/TERT1 release of interleukin (IL)-6, IL-8, monocyte chemoattractant protein (MCP)-1 and neutrophil gelatinase-associated lipocalin (NGAL). The HG pro-inflammatory effect was attenuated by concentrated (10×) MSC-CM and, to a greater extent, by MSC transwell co-culture. Bioinformatics analysis of RNA sequencing data confirmed a predominant effect of HG on inflammation-related mediators and biological processes/KEGG pathways in RPTEC/TERT1 stable monolayers as well as the non-contact-dependent anti-inflammatory effect of MSC. Finally, CM from HG-exposed RPTEC/MSC transwell co-cultures was associated with attenuated secretion of inflammatory mediators by macrophages compared to CM from HG-stimulated RPTEC alone. CONCLUSIONS: Stable RPTEC monolayers demonstrate delayed pro-inflammatory response to HG that is attenuated by close proximity to human MSC. In DKD, this MSC effect has potential to modulate hyperglycemia-associated RPTEC/macrophage cross-talk.


Subject(s)
Glucose/toxicity , Inflammation/pathology , Kidney Tubules, Proximal/pathology , Mesenchymal Stem Cells/metabolism , Cell Shape/drug effects , Cells, Cultured , Culture Media, Conditioned/pharmacology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Extracellular Space/metabolism , Gene Expression Regulation/drug effects , Humans , Inflammation Mediators/metabolism , Kidney Tubules, Proximal/drug effects , Macrophages/drug effects , Macrophages/metabolism , Mesenchymal Stem Cells/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription, Genetic/drug effects
6.
Biochim Biophys Acta Mol Basis Dis ; 1865(12): 165532, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31422117

ABSTRACT

BACKGROUND: Primary cilia have been shown to play a central role in regulating epithelial cell differentiation during injury and repair. Growing evidence implicates structural and functional abnormalities of primary cilia in kidney epithelial cells in the onset and development of various kidney diseases including polycystic kidney disease (PKD). Neutrophil-gelatinase associated lipocalin (NGAL) has been identified as a reliable urinary biomarker of kidney injury. However, the mechanism by which this protein accumulates in patient urine samples has not been fully elucidated. METHODS: Human renal tubular epithelial cells (RPTECs) were exposed to previously characterized deciliating agents to assess mechanisms of primary cilium loss. Confocal immunofluorescent imaging was employed to visualise the effects on cilia. Western blot analysis was utilised to quantify the ciliary protein Arl13b in both RPTEC whole cell lysates and supernatants. Co-immunoprecipitation was used to demonstrate co-localisation of Arl13b and NGAL in urinary samples from a clinical Chronic Allograft Nephropathy (CAN) cohort. RESULTS: Immunofluorescent analysis revealed that NGAL was localised to the primary cilium in RPTECs, co-localizing with a ciliary specific protein, Arl13b. Deciliation experiments showed that loss of the cilia coincided with loss of NGAL from the cells. CONCLUSION: The accumulation of NGAL in supernatants in vitro and in the urine of CAN patients was concurrent with loss of Arl13b, a specific ciliary protein. The findings of this study propose that increased NGAL urinary concentrations are directly linked to deciliation of the renal epithelial cells as a result of injury.


Subject(s)
Cilia/pathology , Epithelial Cells/pathology , Kidney Diseases/diagnosis , Kidney Tubules/pathology , Lipocalin-2/analysis , ADP-Ribosylation Factors/analysis , ADP-Ribosylation Factors/urine , Biomarkers/analysis , Cell Line , Cilia/chemistry , Epithelial Cells/cytology , Humans , Kidney Diseases/pathology , Kidney Diseases/urine , Kidney Tubules/cytology , Lipocalin-2/urine
7.
Oncol Lett ; 17(3): 3041-3047, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30867732

ABSTRACT

Primary cilia are microtubule-based organelles that are expressed on almost all mammalian cells. It has become apparent that these structures are important signaling hubs that serve crucial roles in Wnt, hedgehog, extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) and Notch signaling pathways. A number of diseases have been found to involve dysfunctional primary cilia; collectively these diseases are called ciliopathies. In recent years, there has been more focus on the association between primary cilia and cancer, including renal, pancreatic and breast cancer. Numerous studies have demonstrated that various types of cancer cells fail to express cilia. Notably, it has also been indicated that a number of renal carcinogens induce a significant loss of cilia in renal epithelial cells. The present review focuses on the existing literature regarding primary cilia and their involvement with cancer signaling pathways, providing a brief overview of the structural features and functions of primary cilia, then discussing the evidence associating primary cilia with cancer, and presenting the available information on the ERK/MAPK, hedgehog and Wnt signaling pathways, and their involvement in primary cilia in association with cancer.

8.
Antioxidants (Basel) ; 7(12)2018 Dec 03.
Article in English | MEDLINE | ID: mdl-30513914

ABSTRACT

Cystinosin is a lysosomal transmembrane protein which facilitates transport of the disulphide amino acid cystine (CySS) from the lysosomes of the cell. This protein is encoded by the CTNS gene which is defective in the lysosomal storage disorder, cystinosis. Because of the apparent involvement of cystinosin in the intermediary thiol metabolism, its discovery has fuelled investigations into its role in modulating cellular redox homeostasis. The kidney proximal tubular cells (PTCs) have become the focus of various studies on cystinosin since the protein is highly expressed in these cells and kidney proximal tubular transport dysfunction is the foremost clinical manifestation of cystinosis. The lysosomal CySS pool is a major source of cytosolic cysteine (Cys), the limiting amino acid for the synthesis of an important antioxidant glutathione (GSH) via the γ-glutamyl cycle. Therefore, loss of cystinosin function is presumed to lead to cytosolic deficit of Cys which may impair GSH synthesis. However, studies using in vitro models lacking cystinosin yielded inconsistent results and failed to establish the mechanistic role of cystinosin in modulating GSH synthesis and redox homeostasis. Because of the complexity of the metabolic micro- and macro-environment in vivo, using in vitro models alone may not be able to capture the complete sequence of biochemical and physiological events that occur as a consequence of loss of cystinosin function. The coexistence of pathways for the overall handling and disposition of GSH, the modulation of CTNS gene by intracellular redox status and the existence of a non-canonical isoform of cystinosin may constitute possible rescue mechanisms in vivo to remediate redox perturbations in renal PTCs. Importantly, the mitochondria seem to play a critical role in orchestrating redox imbalances initiated by cystinosin dysfunction. Non-invasive techniques such as in vivo magnetic resonance imaging with the aid of systems biology approaches may provide invaluable mechanistic insights into the role of cystinosin in the essential intermediary thiol metabolism and in the overall regulation cellular redox homeostasis.

9.
Clin Exp Pharmacol Physiol ; 45(11): 1149-1160, 2018 11.
Article in English | MEDLINE | ID: mdl-29924417

ABSTRACT

Nitric oxide (NO) has been shown to play an important role in renal physiology and pathophysiology partly through its influence on various transport systems in the kidney proximal tubule. The role of NO in kidney dysfunction associated with lysosomal storage disorder, cystinosis, is largely unknown. In the present study, the effects of inducible nitric oxide synthase (iNOS)-specific inhibitor, 1400W, on Na+ ,K+ -ATPase activity and expression, mitochondrial integrity and function, nutrient metabolism, and apoptosis were investigated in Ctns null proximal tubular epithelial cells (PTECs). Ctns null PTECs exhibited an increase in iNOS expression, augmented NO and nitrite/nitrate production, and reduced Na+ ,K+ -ATPase expression and activity. In addition, these cells displayed depolarized mitochondria, reduced adenosine triphosphate content, altered nutrient metabolism, and elevated apoptosis. Treatment of Ctns null PTECs with 1400W abolished these effects which culminated in the mitigation of apoptosis in these cells. These findings indicate that uncontrolled NO production may constitute the upstream event that leads to the molecular and biochemical alterations observed in Ctns null PTECs and may explain, at least in part, the generalized proximal tubular dysfunction associated with cystinosis. Further studies are needed to realize the potential benefits of anti-nitrosative therapies in improving renal function and/or attenuating renal injury in cystinosis.


Subject(s)
Amidines/pharmacology , Benzylamines/pharmacology , Epithelial Cells/drug effects , Gene Knockout Techniques , Kidney Tubules, Proximal/cytology , Mitochondria/drug effects , Nitric Oxide Synthase Type II/antagonists & inhibitors , Sodium-Potassium-Exchanging ATPase/metabolism , Amino Acid Transport Systems, Neutral/deficiency , Amino Acid Transport Systems, Neutral/genetics , Animals , Apoptosis/drug effects , Cell Line , Cell Survival/drug effects , Enzyme Inhibitors/pharmacology , Epithelial Cells/cytology , Epithelial Cells/metabolism , Gene Expression Regulation, Enzymologic/drug effects , Mice , Mitochondria/pathology , Nitric Oxide/metabolism , Nutrients/metabolism , Oxidative Stress/drug effects
10.
Curr Pharm Des ; 24(5): 595-614, 2018.
Article in English | MEDLINE | ID: mdl-29278208

ABSTRACT

BACKGROUND: Potassium bromate (KBrO3), a food additive, has been used in many bakery products as an oxidizing agent. It has been shown to induce renal cancer in many in-vitro and in-vivo experimental models. OBJECTIVES: This study evaluated the carcinogenic potential of potassium bromate (KBrO3) and the chemopreventive mechanisms of the anti-oxidant and anti-inflammatory phytochemical, curcumin against KBrO3-induced carcinogenicity. METHOD: Lactate dehydrogenase (LDH) cytotoxicity assay and morphological characteristics were used to assess curcumin's cytoprotective potential against KBrO3 toxicity. To assess the chemopreventive potential of curcumin against KBrO3-induced oxidative insult, intracellular H2O2 and the nuclear concentration of the DNA adduct 8- OHdG were measured. PCR array, qRT-PCR, and western blot analysis were used to identify dysregulated genes by KBrO3 exposure. Furthermore, immunofluorescence was used to evaluate the ciliary loss and the disturbance of cellular tight junction induced by KBrO3. RESULTS: Oxidative stress assays showed that KBrO3 increased the levels of intracellular H2O2 and the DNA adduct 8-OHdG. Combination of curcumin with KBrO3 efficiently reduced the level of H2O2 and 8-OHdG while upregulating the expression of catalase. PCR array, qRT-PCR, and western blot analysis revealed that KBrO3 dysregulated multiple genes involved in inflammation, proliferation, and apoptosis, namely CTGF, IL-1, and TRAF3. Moreover, qRT-PCR and immunofluorescence studies showed that KBrO3 negatively affected the tight junctional protein (ZO-1) and induced a degeneration of primary ciliary proteins. The negative impact of KBrO3 on cilia was markedly repressed by curcumin. CONCLUSION: Curcumin could potentially be used as a protective agent against carcinogenicity of KBrO3.


Subject(s)
Bromates/antagonists & inhibitors , Carcinogens/antagonists & inhibitors , Curcumin/pharmacology , Food Additives/adverse effects , Protective Agents/pharmacology , Bromates/pharmacology , Carcinogens/pharmacology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Curcumin/analysis , Dose-Response Relationship, Drug , Epithelial Cells/drug effects , Humans , Protective Agents/analysis
11.
J Clin Med ; 5(5)2016 Apr 26.
Article in English | MEDLINE | ID: mdl-27128949

ABSTRACT

Epithelial-mesenchymal transition (EMT), a process which describes the trans-differentiation of epithelial cells into motile mesenchymal cells, is pivotal in stem cell behavior, development and wound healing, as well as contributing to disease processes including fibrosis and cancer progression. Maintenance immunosuppression with calcineurin inhibitors (CNIs) has become routine management for renal transplant patient, but unfortunately the nephrotoxicity of these drugs has been well documented. HK-2 cells were exposed to Tacrolimus (FK506) and EMT markers were assessed by RT PCR and western blot. FK506 effects on TGF-ß mRNA were assessed by RT PCR and TGF-ß secretion was measured by ELISA. The impact of increased TGF-ß secretion on Smad signaling pathways was investigated. The impact of inhibition of TGF-ß signaling on EMT processes was assessed by scratch-wound assay. The results presented in this study suggest that FK506 initiates EMT processes in the HK-2 cell line, with altered expression of epithelial and myofibroblast markers evident. Additionally, the study demonstrates that FK506 activation of the TGF-ß/ SMAD pathways is an essential step in the EMT process. Overall the results demonstrate that EMT is heavily involved in renal fibrosis associated with CNI nephrotoxicity.

12.
J Physiol ; 594(12): 3353-70, 2016 06 15.
Article in English | MEDLINE | ID: mdl-26915455

ABSTRACT

KEY POINTS: Cystine is a disulphide amino acid that is normally generated in the lysosomes by the breakdown of cystine-containing proteins. Previously, we demonstrated that lysosomal cystine accumulation in kidney proximal tubular epithelial cells (PTECs) dramatically reduced glutathione (GSH) levels, which may result in the disruption of cellular redox balance. In the present study, we show that lysosomal cystine accumulation following CTNS gene silencing in kidney PTECs resulted in elevated intracellular reactive oxygen species production, reduced antioxidant capacity, induction of redox-sensitive proteins, altered mitochondrial integrity and augmented cell death. These alterations may represent different facets of a unique cascade leading to tubular dysfunction initiated by lysosomal cystine accumulation and may present a clear disadvantage for cystinotic PTECs in vivo. Cystine depletion by cysteamine afforded cytoprotection in CTNS knockdown cells by reducing oxidative stress, normalizing intracellular GSH and ATP content, and preserving cell viability. ABSTRACT: Cystine is a disulphide amino acid that is normally generated within the lysosomes through lysosomal-based protein degradation and via extracellular uptake of free cystine. In the autosomal recessive disorder, cystinosis, a defect in the CTNS gene results in excessive lysosomal accumulation of cystine, with early kidney failure a hallmark of the disease. Previously, we demonstrated that silencing of the CTNS gene in kidney proximal tubular epithelial cells (PTECs) resulted in an increase in intracellular cystine concentration coupled with a dramatic reduction in the total GSH content. Because of the crucial role of GSH in maintaining the redox status and viability of kidney PTECs, we assessed the effects of CTNS knockdown-induced lysosomal cystine accumulation on intracellular reactive oxygen species (ROS) production, activity of classical redox-sensitive genes, mitochondrial integrity and cell viability. Our results showed that lysosomal cystine accumulation increased ROS production and solicitation to oxidative stress (OS). This was associated with the induction of classical redox-sensitive proteins, NF-κB, NRF2, HSP32 and HSP70. Cystine-loaded PTECs also displayed depolarized mitochondria, reduced ATP content and augmented apoptosis. Treatment of CTNS knockdown PTECs with the cystine-depleting agent cysteamine resulted in the normalization of OS index, increased GSH and ATP content, and preservation of cell viability. Taken together, the alterations observed in cystinotic cells may represent different facets of a cascade leading to tubular dysfunction and, in combination with cysteamine therapy, may offer a novel link for the attenuation of renal injury and preservation of functions of other organs affected in cystinosis.


Subject(s)
Amino Acid Transport Systems, Neutral/genetics , Cystine/physiology , Kidney Tubules, Proximal/cytology , Lysosomes/physiology , Mitochondria/physiology , Adenosine Triphosphate/metabolism , Apoptosis/drug effects , Calcium/metabolism , Cell Line , Cell Survival/drug effects , Cysteamine/pharmacology , Cystine/metabolism , Gene Silencing , Glutathione/metabolism , Humans , Lysosomes/metabolism , Membrane Potential, Mitochondrial , Oxidation-Reduction , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism
13.
J Physiol ; 593(23): 5167-82, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26482480

ABSTRACT

The pancreatic ß-cell has reduced antioxidant defences making it more susceptible to oxidative stress. In cystinosis, a lysosomal storage disorder, an altered redox state may contribute to cellular dysfunction. This rare disease is caused by an abnormal lysosomal cystine transporter, cystinosin, which causes excessive accumulation of cystine in the lysosome. Cystinosis associated kidney damage and dysfunction leads to the Fanconi syndrome and ultimately end-stage renal disease. Following kidney transplant, cystine accumulation in other organs including the pancreas leads to multi-organ dysfunction. In this study, a Ctns gene knockdown model of cystinosis was developed in the BRIN-BD11 rat clonal pancreatic ß-cell line using Ctns-targeting siRNA. Additionally there was reduced cystinosin expression, while cell cystine levels were similarly elevated to the cystinotic state. Decreased levels of chronic (24 h) and acute (20 min) nutrient-stimulated insulin secretion were observed. This decrease may be due to depressed ATP generation particularly from glycolysis. Increased ATP production and the ATP/ADP ratio are essential for insulin secretion. Oxidised glutathione levels were augmented, resulting in a lower [glutathione/oxidised glutathione] redox potential. Additionally, the mitochondrial membrane potential was reduced, apoptosis levels were elevated, as were markers of oxidative stress, including reactive oxygen species, superoxide and hydrogen peroxide. Furthermore, the basal and activated phosphorylated forms of the redox-sensitive transcription factor NF-κB were increased in cells with silenced Ctns. From this study, the cystinotic-like pancreatic ß-cell model demonstrated that the altered oxidative status of the cell, resulted in depressed mitochondrial function and pathways of ATP production, causing reduced nutrient-stimulated insulin secretion.


Subject(s)
Adenosine Triphosphate/metabolism , Cystine/metabolism , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Oxidative Stress , Amino Acid Transport Systems, Neutral/genetics , Amino Acid Transport Systems, Neutral/metabolism , Animals , Apoptosis , Cell Line , Exocytosis , NF-kappa B/metabolism , Rats
14.
Nephrol Dial Transplant ; 30 Suppl 4: iv60-7, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26209740

ABSTRACT

The incidence of Type 2 diabetes is increasing rapidly worldwide, and understanding the mechanisms of its complications including diabetic nephropathy (DN) is important in the discovery of early biomarkers, understanding the causative mechanisms of its complications and identifying therapeutic targets. DN is characterized by glomerulosclerosis, tubulointerstitial fibrosis and tubular atrophy. The tubular component of the disease is important in progression of disease. In vitro models are a valuable alternative to animal studies and an effective way to explore mechanisms of human disease. Several proximal tubular cell lines have been used in studying mechanisms of DN. Key extracellular conditions that contribute to damage to the proximal tubule in DN include hyperglycaemia, proteinuria, and hypoxia and inflammation. According to current knowledge, these exert their effects through changes in transforming growth factor beta signalling, the renin-angiotensin system, dysregulation of pathways such as the polyol pathway, hexosamine pathway and protein kinase C pathway and through formation of advanced glycation end products. Studies in cell culture models have been instrumental in the delineation of these processes. However, all of the existing cell culture models have limitations including dedifferentiation. To bring research forward along with technological advances, such as major advances in 'omics' methodologies, a more suitable model is necessary. The RPTEC/TERT1 cell line is a promising alternative to previous proximal tubular epithelial cell lines due to features that resemble the cell type in vivo, such as its epithelial characteristics, maintenance of functional capabilities, glucose handling, expression of the primary cilium and transport activity including albumin. This cell line will facilitate identification of mechanisms of DN with potential to identify new therapeutic targets.


Subject(s)
Diabetes Mellitus, Type 2/physiopathology , Diabetic Nephropathies/etiology , Disease Models, Animal , Kidney Tubules, Proximal/pathology , Animals , Diabetes Mellitus, Type 2/complications , Disease Progression , Humans , In Vitro Techniques
15.
Proteomics Clin Appl ; 9(5-6): 574-85, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25951805

ABSTRACT

PURPOSE: Chronic allograft nephropathy (CAN) is widely accepted as the leading cause of renal allograft loss after the first year post transplantation. This study aimed to identify urinary biomarkers that could predict CAN in transplant patients. EXPERIMENTAL DESIGN: The study included 34 renal transplant patients with histologically proven CAN and 36 renal transplant patients with normal renal function. OrbiTrap MS was utilized to analysis a urinary fraction in order to identify other members of a previously identified biomarker tree . This novel biomarker pattern offers the potential to distinguish between transplant recipients with CAN and those with normal renal function. RESULTS: The primary node of the biomarker pattern was reconfirmed as ß2 microglobulin. Three other members of this biomarker pattern were identified: neutrophil gelatinase-associated lipocalin, clusterin, and kidney injury biomarker 1. Significantly higher urinary concentrations of these proteins were found in patients with CAN compared to those with normal kidney function. CONCLUSIONS AND CLINICAL RELEVANCE: While further validation in a larger more-diverse patient population is required to determine if this biomarker pattern provides a potential means of diagnosing CAN by noninvasive methods in a clinical setting, this study clearly demonstrates the biomarkers' ability to stratify patients based on transplant function.


Subject(s)
Graft Rejection/urine , Kidney Diseases/urine , Peptide Fragments/urine , Proteinuria/urine , Allografts , Amino Acid Sequence , Biomarkers/urine , Delayed Graft Function , Humans , Kidney Transplantation , Molecular Sequence Data , Peptide Fragments/chemistry
16.
Int J Mol Sci ; 14(10): 19416-33, 2013 Sep 25.
Article in English | MEDLINE | ID: mdl-24071941

ABSTRACT

Chemical carcinogens are substances which induce malignant tumours, increase their incidence or decrease the time taken for tumour formation. Often, exposure to chemical carcinogens results in tissue specific patterns of tumorigenicity. The very same anatomical, biochemical and physiological specialisations which permit the kidney to perform its vital roles in maintaining tissue homeostasis may in fact increase the risk of carcinogen exposure and contribute to the organ specific carcinogenicity observed with numerous kidney carcinogens. This review will address the numerous mechanisms which play a role in the concentration, bioactivation, and uptake of substances from both the urine and blood which significantly increase the risk of cancer in the kidney.


Subject(s)
Carcinogenesis/chemically induced , Carcinogenesis/pathology , Carcinogens/metabolism , Kidney Neoplasms/chemically induced , Kidney Neoplasms/pathology , Animals , Carcinogenesis/metabolism , Humans , Kidney Neoplasms/metabolism
17.
Exp Physiol ; 98(10): 1505-17, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23813804

ABSTRACT

Using the cystine dimethylester (CDME) loading technique to achieve elevated lysosomal cystine levels, ATP depletion has previously been postulated to be responsible for the renal dysfunction in cystinosis, a genetic disorder characterized by an excessive accumulation of cystine in the lysosomes. However, this is unlikely to be the sole factor responsible for the complexity of cell stress associated with cystinosis. Moreover, CDME has been shown to induce a direct toxic effect on mitochondrial ATP generation. Using a human-derived proximal tubular epithelial cell line, we compared the effects of CDME loading with small interfering RNA-mediated cystinosin, lysosomal cystine transporter (CTNS) gene silencing on glutathione redox status, reactive oxygen species levels, oxidative stress index, antioxidant enzyme activities and ATP generating capacity. The CDME-loaded cells displayed increased total glutathione content, extensive superoxide depletion, augmented oxidative stress index, decreased catalase activity, normal superoxide dismutase activity and compromised ATP generation. In contrast, cells subjected to CTNS gene inhibition demonstrated decreased total glutathione content, increased superoxide levels, unaltered oxidative stress index, unaltered catalase activity, induction of superoxide dismutase activity and normal ATP generation. Our data indicate that many CDME-induced effects are independent of lysosomal cystine accumulation, which further underscores the limited value of CDME loading for studying the pathogenesis of cystinosis. CTNS gene inhibition, which results in intracellular cystine accumulation, is a more realistic approach for investigating biochemical alterations in cystinosis.


Subject(s)
Adenosine Triphosphate/metabolism , Cystine/analogs & derivatives , Amino Acid Transport Systems, Neutral/genetics , Catalase/metabolism , Cell Line , Cell Survival/drug effects , Cystine/metabolism , Cystine/pharmacology , Gene Silencing , Humans , Kidney Tubules, Proximal/cytology , Lysosomes/metabolism , Oxidative Stress/drug effects , Superoxide Dismutase/metabolism
18.
Proteomes ; 1(2): 159-179, 2013 Sep 23.
Article in English | MEDLINE | ID: mdl-28250402

ABSTRACT

This review focuses on the role of OMICs technologies, concentrating in particular on proteomics, in biomarker discovery in chronic allograft injury (CAI). CAI is the second most prevalent cause of allograft dysfunction and loss in the first decade post-transplantation, after death with functioning graft (DWFG). The term CAI, sometimes referred to as chronic allograft nephropathy (CAN), describes the deterioration of renal allograft function and structure as a result of immunological processes (chronic antibody-mediated rejection), and other non-immunological factors such as calcineurin inhibitor (CNI) induced nephrotoxicity, hypertension and infection. Current methods for assessing allograft function are costly, insensitive and invasive; traditional kidney function measurements such as serum creatinine and glomerular filtration rate (GFR) display poor predictive abilities, while the current "gold-standard" involving histological diagnosis with a renal biopsy presents its own inherent risks to the overall health of the allograft. As early as two years post-transplantation, protocol biopsies have shown more than 50% of allograft recipients have mild CAN; ten years post-transplantation more than 50% of the allograft recipients have progressed to severe CAN which is associated with diminishing graft function. Thus, there is a growing medical requirement for minimally invasive biomarkers capable of identifying the early stages of the disease which would allow for timely intervention. Proteomics involves the study of the expression, localization, function and interaction of the proteome. Proteomic technologies may be powerful tools used to identify novel biomarkers which would predict CAI in susceptible individuals. In this paper we will review the use of proteomics in the elucidation of novel predictive biomarkers of CAI in clinical, animal and in vitro studies.

19.
Arch Toxicol ; 86(11): 1741-51, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22760423

ABSTRACT

Potassium bromate (KBrO(3)) is an oxidising agent that has been widely used in the food and cosmetic industries. It has shown to be both a nephrotoxin and a renal carcinogen in in vivo and in vitro models. Here, we investigated the effects of KBrO(3) in the human and rat proximal tubular cell lines RPTEC/TERT1 and NRK-52E. A genome-wide transcriptomic screen was carried out from cells exposed to a sub-lethal concentration of KBrO(3) for 6, 24 and 72 h. Pathway analysis identified "glutathione metabolism", "Nrf2-mediated oxidative stress" and "tight junction (TJ) signalling" as the most enriched pathways. TJ signalling was less impacted in the rat model, and further studies revealed low transepithelial electrical resistance (TEER) and an absence of several TJ proteins in NRK-52E cells. In RPTEC/TERT1 cells, KBrO(3) exposure caused a decrease in TEER and resulted in altered expression of several TJ proteins. N-Acetylcysteine co-incubation prevented these effects. These results demonstrate that oxidative stress has, in conjunction with the activation of the cytoprotective Nrf2 pathway, a dramatic effect on the expression of tight junction proteins. The further understanding of the cross-talk between these two pathways could have major implications for epithelial repair, carcinogenesis and metastasis.


Subject(s)
Bromates/toxicity , Kidney Tubules, Proximal/drug effects , Oxidative Stress/drug effects , Tight Junction Proteins/metabolism , Animals , Cell Line , Dose-Response Relationship, Drug , Gene Expression Regulation/drug effects , Humans , Kidney Tubules, Proximal/cytology , NF-E2-Related Factor 2/metabolism , Oxidative Stress/genetics , Rats , Tight Junctions/metabolism , Toxicity Tests
20.
J Signal Transduct ; 2012: 463617, 2012.
Article in English | MEDLINE | ID: mdl-22523682

ABSTRACT

This paper focuses on the role that mitogen-activated protein kinases (MAPKs) play in drug-induced kidney injury. The MAPKs, of which there are four major classes (ERK, p38, JNK, and ERK5/BMK), are signalling cascades which have been found to be broadly conserved across a wide variety of organisms. MAPKs allow effective transmission of information from the cell surface to the cytosolic or nuclear compartments. Cross talk between the MAPKs themselves and with other signalling pathways allows the cell to modulate responses to a wide variety of external stimuli. The MAPKs have been shown to play key roles in both mediating and ameliorating cellular responses to stress including xenobiotic-induced toxicity. Therefore, this paper will discuss the specific role of the MAPKs in the kidney in response to injury by a variety of xenobiotics and the potential for therapeutic intervention at the level of MAPK signalling across different types of kidney disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...