Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Heredity (Edinb) ; 108(5): 490-9, 2012 May.
Article in English | MEDLINE | ID: mdl-22027895

ABSTRACT

Appropriate selection of parents for the development of mapping populations is pivotal to maximizing the power of quantitative trait loci detection. Trait genotypic variation within a family is indicative of the family's informativeness for genetic studies. Accurate prediction of the most useful parental combinations within a species would help guide quantitative genetics studies. We tested the reliability of genotypic and phenotypic distance estimators between pairs of maize inbred lines to predict genotypic variation for quantitative traits within families derived from biparental crosses. We developed 25 families composed of ~200 random recombinant inbred lines each from crosses between a common reference parent inbred, B73, and 25 diverse maize inbreds. Parents and families were evaluated for 19 quantitative traits across up to 11 environments. Genetic distances (GDs) among parents were estimated with 44 simple sequence repeat and 2303 single-nucleotide polymorphism markers. GDs among parents had no predictive value for progeny variation, which is most likely due to the choice of neutral markers. In contrast, we observed for about half of the traits measured a positive correlation between phenotypic parental distances and within-family genetic variance estimates. Consequently, the choice of promising segregating populations can be based on selecting phenotypically diverse parents. These results are congruent with models of genetic architecture that posit numerous genes affecting quantitative traits, each segregating for allelic series, with dispersal of allelic effects across diverse genetic material. This architecture, common to many quantitative traits in maize, limits the predictive value of parental genotypic or phenotypic values on progeny variance.


Subject(s)
Biological Evolution , Genetic Variation , Zea mays/genetics , Genotype , Inbreeding , Phenotype , Polymorphism, Single Nucleotide , Predictive Value of Tests , Quantitative Trait Loci
2.
Theor Appl Genet ; 120(4): 721-34, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19911162

ABSTRACT

The main hydroxamic acid in maize (Zea mays L.) is 2-4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA). DIMBOA confers resistance to leaf-feeding by several corn borers. Most genes involved in the DIMBOA metabolic pathway are located on the short arm of chromosome 4, and quantitative trait loci (QTLs) involved in maize resistance to leaf-feeding by corn borers have been localized to that region. However, the low resolution of QTL linkage mapping does not allow convincing proof that genetic variation at bx loci was responsible for the variability for resistance. This study addressed the following objectives: to determine the QTLs involved in DIMBOA synthesis across genetically divergent maize inbreds using eight RIL families from the nested association mapping population, to check the stability of QTLs for DIMBOA content across years by evaluating two of those RIL families in 2 years, and to test the involvement of bx1 by performing association mapping with a panel of 281 diverse inbred lines. QTLs were stable across different environments. A genetic model including eight markers explained approximately 34% of phenotypic variability across eight RIL families and the position of the largest QTL co-localizes with the majority of structural genes of the DIMBOA pathway. Candidate association analysis determined that sequence polymorphisms at bx1 greatly affects variation of DIMBOA content in a diverse panel of maize inbreds, but the specific causal polymorphism or polymorphisms responsible for the QTL detected in the region 4.01 were not identified. This result may be because the causal polymorphism(s) were not sequenced, identity is masked by linkage disequilibrium, adjustments for population structure reduce significance of causal polymorphisms or multiple causal polymorphisms affecting bx1 segregate among inbred lines.


Subject(s)
Benzoxazines/metabolism , Genes, Plant , Genetic Variation , Zea mays/chemistry , Zea mays/genetics , Animals , Food Chain , Insecta , Plant Leaves/chemistry , Quantitative Trait Loci
3.
Theor Appl Genet ; 115(1): 119-28, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17486311

ABSTRACT

Maysin is a naturally occurring C-glycosyl flavone found in maize (Zea mays L.) silk tissue that confers resistance to corn earworm (Helicoverpa zea, Boddie). Recently, two new maize populations were derived for high silk maysin. The two populations were named the exotic populations of maize (EPM) and the southern inbreds of maize (SIM). Quantitative trait locus (QTL) analysis was employed to determine which loci were responsible for elevated maysin levels in inbred lines derived from the EPM and SIM populations. The candidate genes consistent with QTL position included the p (pericarp color), c2 (colorless2), whp1 (white pollen1) and in1 (intensifier1) loci. The role of these loci in controlling high maysin levels in silks was tested by expression analysis and use of the loci as genetic markers onto the QTL populations. These studies support p, c2 and whp1, but not in1, as loci controlling maysin. Through this study, we determined that the p locus regulates whp1 transcription and that increased maysin in these inbred lines was primarily due to alleles at both structural and regulatory loci promoting increased flux through the flavone pathway by increasing chalcone synthase activity.


Subject(s)
Flavonoids/biosynthesis , Flowers/metabolism , Glucosides/biosynthesis , Quantitative Trait Loci , Selection, Genetic , Zea mays/genetics , Zea mays/metabolism , Flavonoids/genetics , Flowers/genetics , Glucosides/genetics
4.
Theor Appl Genet ; 110(7): 1324-33, 2005 May.
Article in English | MEDLINE | ID: mdl-15806344

ABSTRACT

Two compounds, the C-glycosyl flavone maysin and the phenylpropanoid product chlorogenic acid (CGA), have been implicated in corn earworm (Helicoverpa zea Boddie) resistance in maize (Zea mays L.). Previous quantitative trait locus (QTL) analyses identified the pericarp color (p) locus, which encodes a transcription factor, as the major QTL for maysin and CGA. QTL analysis has also implicated the dihydroflavanol reductase (DFR; E.C. no. 1.1.1.219) locus anthocyaninless1 (a1) and the duplicate chalcone synthase (CHS; E.C. no. 2.3.1.74) loci colorless2 (c2) and white pollen1 (whp1) as genes underlying QTL for maysin and/or CGA synthesis. Epistatic interactions between p and a1 and between p and c2 were also defined. CHS catalyzes the first step in the flavonoid pathway and represents one of the first enzyme steps following the branch off the general phenylpropanoid pathway towards CGA synthesis. In maize, the reduction of dihydroflavanol to leucoanthocyanin by DFR immediately follows the pathway branch leading to C-glycosyl flavone production. The detection of QTLs for maysin and CGA concentration at loci encoding enzyme steps following the pathway branch points implicates alterations in the flow of biochemical intermediates as the biological basis of the QTL effects. To examine if sequence variation among alleles of a1, c2, and whp1 affect maysin and CGA synthesis in maize silks, we performed an association analysis. Because the p locus has often been a major QTL for maysin and CGA and has exhibited epistatic interactions with a1, c2, and whp1, association analysis was conditioned on the p genotype. A highly significant association of two sequence polymorphisms in the promoter of a1 with maysin synthesis was demonstrated. Additional conditioning on the genotype of the significant a1 polymorphism allowed the detection of a significant polymorphism within the whp1 promoter. Our analyses demonstrate that conditioning for epistatic factors greatly increases the power of association testing.


Subject(s)
Chlorogenic Acid/chemistry , Flavonoids/genetics , Glucosides/genetics , Immunity, Innate/genetics , Plant Diseases/parasitology , Polymorphism, Genetic , Quantitative Trait Loci , Zea mays/genetics , Animals , Base Sequence , Epistasis, Genetic , Flavonoids/chemistry , Glucosides/chemistry , Likelihood Functions , Models, Statistical , Molecular Sequence Data , Moths , Plant Diseases/genetics , Sequence Analysis, DNA
5.
J Hered ; 95(3): 225-33, 2004.
Article in English | MEDLINE | ID: mdl-15220389

ABSTRACT

We utilized maize (Zea mays L.) lines expressing the salmon silk (sm) phenotype, quantitative trait locus analysis, and analytical chemistry of flavone compounds to establish the order of undefined steps in the synthesis of the flavone maysin in maize silks. In addition to the previously described sm1 gene, we identified a second sm locus, which we designate sm2, located on the long arm of maize chromosome 2. Our data indicate that the sm1 gene encodes or controls a glucose modification enzyme and sm2 encodes or controls a rhamnosyl transferase. The order of intermediates in the late steps of maysin synthesis was established as luteolin --> isoorientin --> rhamnosylisoorientin --> maysin.


Subject(s)
Flavonoids/biosynthesis , Glucosides/biosynthesis , Phenotype , Pigmentation/genetics , Zea mays/genetics , Chromatography, High Pressure Liquid , Chromosome Mapping , Epistasis, Genetic , Flavonoids/chemistry , Flavonoids/genetics , Genetic Complementation Test , Glucosides/chemistry , Glucosides/genetics , Hexosyltransferases/genetics , Luteolin , Quantitative Trait Loci , Zea mays/chemistry
6.
Theor Appl Genet ; 107(7): 1331-6, 2003 Nov.
Article in English | MEDLINE | ID: mdl-12928781

ABSTRACT

Maize ( Zea mays L.) stalk lodging is breakage of the stalk at or below the ear, which may result in loss of the ear at harvest. Stalk lodging is often intensified by the stalk tunneling action of the second-generation of the European corn borer (2-ECB) [Ostrinia nubilalis (Hübner)]. Rind penetrometer resistance (RPR) has been used to measure stalk strength and improve stalk lodging resistance, and quantitative trait loci (QTL) have been identified for both RPR and 2-ECB damage. Phenotypic recurrent selection (PS) increases the frequency of favorable alleles over cycles of selection. Several studies have indicated that marker-assisted selection (MAS) is also a potentially valuable selection tool. The objective of this study was to compare the efficiency of PS versus MAS for RPR and 2-ECB. Marker-assisted selection for high and low RPR was effective in the three populations studied. Phenotypic selection for both high and low RPR was more effective than MAS in two of the populations. However, in a third population, MAS for high RPR using QTL effects from the same population was more effective than PS, and using QTL effects from a separate population was just as effective as PS. Marker-assisted selection for resistance and susceptibility to 2-ECB using QTL effects from the same population was effective in increasing susceptibility, but not in increasing resistance. Marker-assisted selection using QTL effects from a separate population was effective in both directions of selection. Thus, MAS was effective in selecting for both resistance and susceptibility to 2-ECB. These results demonstrated that MAS can be an effective selection tool for both RPR and 2-ECB resistance. These results also validate the locations and effects of QTL for RPR and 2-ECB resistance identified in earlier studies.


Subject(s)
Crosses, Genetic , Genetic Markers , Lepidoptera/physiology , Plant Diseases/genetics , Plant Stems/physiology , Quantitative Trait, Heritable , Selection, Genetic , Zea mays/physiology , Alleles , Animals , Chromosome Mapping , Models, Genetic , Phenotype , Plant Diseases/microbiology , Plant Diseases/parasitology , Zea mays/microbiology , Zea mays/parasitology
7.
Plant J ; 27(5): 467-78, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11576430

ABSTRACT

The maize p1 gene encodes a Myb-homologous regulator of red pigment biosynthesis. To investigate the tissue-specific regulation of the p1 gene, maize plants were transformed with constructs combining promoter and cDNA sequences of two alleles which differ in pigmentation patterns: P1-wr (white pericarp/red cob) and P1-rr (red pericarp/red cob). Surprisingly, all promoter/cDNA combinations produced transgenic plants with red pericarp and red cob (RR pattern), indicating that the P1-wr promoter and encoded protein can function in pericarp. Some of the RR patterned transgenic plants produced progeny plants with white pericarp and red cob (WR pattern), and this switch in tissue-specificity correlated with increased transgene methylation. A similar inverse correlation between pericarp pigmentation and DNA methylation was observed for certain natural p1 alleles, which have a gene structure characteristic of standard P1-wr alleles, but which confer red pericarp pigmentation and are consistently less methylated than standard P1-wr alleles. Although we cannot rule out the possible existence of tissue-specific regulatory elements within the p1 non-coding sequences or flanking regions, the data from transgenic and natural alleles suggest that the tissue-specific pigmentation pattern characteristic of the P1-wr phenotype is epigenetically controlled.


Subject(s)
DNA-Binding Proteins/genetics , Plant Proteins/genetics , Proto-Oncogene Proteins c-myb , Transcription Factors/genetics , Zea mays/genetics , Alleles , DNA Methylation , Gene Expression Regulation, Plant , Genes, Plant , Pigmentation/genetics , Plants, Genetically Modified , Seeds , Tissue Distribution
8.
Genome ; 44(4): 667-76, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11550903

ABSTRACT

A major weakness in our understanding of the genetic basis of complex traits has been that of defining the extent and biological basis of epistasis. Our research group has been studying the genetic control of the accumulation of maysin, a C-glycosyl flavone, in maize, Zea mays (L.), silks. Previously, we demonstrated the importance of the p1 locus as a QTL for maysin synthesis. The p1 locus often exhibits significant epistatic interactions with other loci. We developed a mapping population, (W23al x GT119)F2, specifically designed to test whether genes in an intersecting pathway might be detected as QTLs for maysin synthesis and result in epistatic interaction effects. The a1 gene is not required for the synthesis of flavones but is required for the synthesis of 3-deoxyanthocyanins, an intersecting pathway, in maize silks. The p1 locus (P < 0.0001) was a QTL for both flavones and 3-deoxyanthocyanins. The a1 locus was also highly significant (P < 0.0001) for both traits, as was the p1 x a1 epistatic interaction (P < 0.0001). Our results demonstrate that altering the flux of biochemical intermediates between pathways may be the biological basis of major QTL effects and epistatic interactions.


Subject(s)
Anthocyanins/genetics , Epistasis, Genetic , Flavonoids/genetics , Glucosides/genetics , Zea mays/genetics , Alleles , Anthocyanins/chemistry , Chromosome Mapping , Crosses, Genetic , Flavonoids/chemistry , Genotype , Glucosides/chemistry , Models, Chemical , Models, Genetic , Quantitative Trait, Heritable
9.
Genetics ; 152(3): 1137-72, 1999 Jul.
Article in English | MEDLINE | ID: mdl-10388831

ABSTRACT

We have constructed a 1736-locus maize genome map containing1156 loci probed by cDNAs, 545 probed by random genomic clones, 16 by simple sequence repeats (SSRs), 14 by isozymes, and 5 by anonymous clones. Sequence information is available for 56% of the loci with 66% of the sequenced loci assigned functions. A total of 596 new ESTs were mapped from a B73 library of 5-wk-old shoots. The map contains 237 loci probed by barley, oat, wheat, rice, or tripsacum clones, which serve as grass genome reference points in comparisons between maize and other grass maps. Ninety core markers selected for low copy number, high polymorphism, and even spacing along the chromosome delineate the 100 bins on the map. The average bin size is 17 cM. Use of bin assignments enables comparison among different maize mapping populations and experiments including those involving cytogenetic stocks, mutants, or quantitative trait loci. Integration of nonmaize markers in the map extends the resources available for gene discovery beyond the boundaries of maize mapping information into the expanse of map, sequence, and phenotype information from other grass species. This map provides a foundation for numerous basic and applied investigations including studies of gene organization, gene and genome evolution, targeted cloning, and dissection of complex traits.


Subject(s)
Chromosome Mapping , Expressed Sequence Tags , Genetic Markers , Genome, Plant , Zea mays/genetics , Models, Genetic , Sequence Tagged Sites
10.
Genetics ; 149(4): 1997-2006, 1998 Aug.
Article in English | MEDLINE | ID: mdl-9691053

ABSTRACT

C-glycosyl flavones in maize silks confer resistance (i.e., antibiosis) to corn earworm (Helicoverpa zea [Boddie]) larvae and are distinguished by their B-ring substitutions, with maysin and apimaysin being the di- and monohydroxy B-ring forms, respectively. Herein, we examine the genetic mechanisms underlying the synthesis of maysin and apimaysin and the corresponding effects on corn earworm larval growth. Using an F2 population, we found a quantitative trait locus (QTL), rem1, which accounted for 55.3% of the phenotypic variance for maysin, and a QTL, pr1, which explained 64.7% of the phenotypic variance for apimaysin. The maysin QTL did not affect apimaysin synthesis, and the apimaysin QTL did not affect maysin synthesis, suggesting that the synthesis of these closely related compounds occurs independently. The two QTLs, rem1 and pr1, were involved in a significant epistatic interaction for total flavones, suggesting that a ceiling exists governing the total possible amount of C-glycosyl flavone. The maysin and apimaysin QTLs were significant QTLs for corn earworm antibiosis, accounting for 14. 1% (rem1) and 14.7% (pr1) of the phenotypic variation. An additional QTL, represented by umc85 on the short arm of chromosome 6, affected antibiosis (R2 = 15.2%), but did not affect the synthesis of the C-glycosyl flavones.


Subject(s)
Anti-Infective Agents/metabolism , Flavonoids/biosynthesis , Glucosides/biosynthesis , Zea mays/genetics , Zea mays/metabolism , Alleles , Animals , Chromosome Mapping , Crosses, Genetic , Epistasis, Genetic , Flavonoids/genetics , Genes, Plant , Genetic Linkage , Genetic Markers , Genetic Variation , Genotype , Larva/pathogenicity , Models, Genetic , Moths/pathogenicity , Phenotype , Quantitative Trait, Heritable , Zea mays/parasitology
11.
Proc Natl Acad Sci U S A ; 95(5): 1996-2000, 1998 Mar 03.
Article in English | MEDLINE | ID: mdl-9482823

ABSTRACT

The interpretation of quantitative trait locus (QTL) studies is limited by the lack of information on metabolic pathways leading to most economic traits. Inferences about the roles of the underlying genes with a pathway or the nature of their interaction with other loci are generally not possible. An exception is resistance to the corn earworm Helicoverpa zea (Boddie) in maize (Zea mays L.) because of maysin, a C-glycosyl flavone synthesized in silks via a branch of the well characterized flavonoid pathway. Our results using flavone synthesis as a model QTL system indicate: (i) the importance of regulatory loci as QTLs, (ii) the importance of interconnecting biochemical pathways on product levels, (iii) evidence for "channeling" of intermediates, allowing independent synthesis of related compounds, (iv) the utility of QTL analysis in clarifying the role of specific genes in a biochemical pathway, and (v) identification of a previously unknown locus on chromosome 9S affecting flavone level. A greater understanding of the genetic basis of maysin synthesis and associated corn earworm resistance should lead to improved breeding strategies. More broadly, the insights gained in relating a defined genetic and biochemical pathway affecting a quantitative trait should enhance interpretation of the biological basis of variation for other quantitative traits.

12.
Proc Natl Acad Sci U S A ; 93(17): 8820-5, 1996 Aug 20.
Article in English | MEDLINE | ID: mdl-11607699

ABSTRACT

Interpretation of quantitative trait locus (QTL) studies of agronomic traits is limited by lack of knowledge of biochemical pathways leading to trait expression. To more fully elucidate the biological significance of detected QTL, we chose a trait that is the product of a well-characterized pathway, namely the concentration of maysin, a C-glycosyl flavone, in silks of maize, Zea mays L. Maysin is a host-plant resistance factor against the corn earworm, Helicoverpa zea (Boddie). We determined silk maysin concentrations and restriction fragment length polymorphism genotypes at flavonoid pathway loci or linked markers for 285 F2 plants derived from the cross of lines GT114 and GT119. Single-factor analysis of variance indicated that the p1 region on chromosome 1 accounted for 58.0% of the phenotypic variance and showed additive gene action. The p1 locus is a transcription activator for portions of the flavonoid pathway. A second QTL, represented by marker umc 105a near the brown pericarp1 locus on chromosome 9, accounted for 10.8% of the variance. Gene action of this region was dominant for low maysin, but was only expressed in the presence of a functional p1 allele. The model explaining the greatest proportion of phenotypic variance (75.9%) included p1, umc105a, umc166b (chromosome 1), r1 (chromosome 10), and two epistatic interaction terms, p1 x umc105a and p1 x r1. Our results provide evidence that regulatory loci have a central role and that there is a complex interplay among different branches of the flavonoid pathway in the expression of this trait.

13.
Plant Cell Rep ; 15(7): 500-5, 1996 Mar.
Article in English | MEDLINE | ID: mdl-24178461

ABSTRACT

Particle bombardment offers a simple method for the introduction of DNA into plant cells. Multiple DNA fragments may be introduced on a single plasmid or on separate plasmids (co-transformation). To investigate some of the properties and limits of co-transformation, 12 different plasmids were introduced into embryogenic suspension culture tissue of soybean [Glycine max (L.) Merrill] via particle bombardment. The DNAs used for co-transformation included 10 plasmids containing KFLP markers for maize and 2 plasmids separately encoding hygromycin-resistance and ß-glucuronidase. Two weeks following bombardment with the 12 different plasmids, suspension culture tissue was placed under hygromycin selection. Hygromycin-resistant clones were isolated after an additional 5 to 6 weeks. Southern hybridization analysis of 26 hygromycin-resistant embryogenic clones verified the presence of introduced plasmid DNAs. All of the co-transforming plasmids were present in most of the transgenic soybean clones and there was no preferential uptake and integration of any of the plasmids. The copy number of individual plasmids was approximately equal within clones but highly variable between clones. While some clones contained as few as zero to three copies of each plasmid, others clones contained as many as 10 to 15 copies of each of the 12 different plasmids.

14.
Theor Appl Genet ; 90(3-4): 341-6, 1995 Mar.
Article in English | MEDLINE | ID: mdl-24173923

ABSTRACT

The mdm1 locus on the short arm of chromosome six confers resistance in maize to five strains of the maize dwarf mosaic virus (MDMV), an aphid transmitted potyvirus. The location of mdm1 in relation to RFLP and morphological loci on the short arm of chromosome six was determined using BC1 and F2 mapping populations. The following map order and distance in cM was obtained from the F2 population; jc1270-2.5-npi245-1.6-umc85/po1-0.5-mdm1/nor-0.5-bnl6.29A-0.5-npi235-0.8-npi101A-4.3-numc59. No recombination between mdm1 and the nucleolus organizer region (nor) was detected, as determined using a probe from the intergenic spacer region of the rDNA repeat. In order to resolve the relationship between mdm1 and the nor, and to recover recombinants around mdm1, a highresolution map within the polymitotic1 (po1) yellow kernel1 (y1) interval was generated using [po1 y1 tester (po1 mdm1 y1) x Pa405 (Po1 Mdm1 Y1)] F2 plants. The recessive po1 allele imparts a male-sterile phenotype when homozygous and since po1 and y1 are closely linked, the majority of fertile plants from white endosperm (y1/y1) F2 kernels will arise though a recombination event between the Pa405 Po1 allele and the y1 allele of the po1 y1 tester. Plants from 7,650 white (y1/y1) F2 kernels were examined (15,300 chromosomes) and a total of 626 F2∶3 recombinant families was recovered. Analysis of these recombinants revealed that mdm1 cosegregates with the nor. This lack of recombination between mdm1 and the nor suggests that: either (1) mdm1 is located in the region flanking the nor and recombination is suppressed within that region, or (2) mdm1 is located within the nor.

15.
Plant Mol Biol ; 24(3): 465-73, 1994 Feb.
Article in English | MEDLINE | ID: mdl-7907232

ABSTRACT

Homeotic gene are key 'switches' that control developmental processes. Homeotic genes containing the consensus 'homeobox' domain have been identified from a number of organisms including Drosophila melanogaster, Caenorhabditis elegans, Homo sapiens, and Zea mays. Although homeotic genes have been demonstrated to be important in embryo development of some insects, amphibians, and mammals, there are no reports of their involvement in plant embryogenesis. Here, we report the isolation and characterization of a cDNA clone for a homeobox-containing gene expressed in somatic embryos of soybean. The cDNA (Sbh1 for soybean homeobox-containing gene) was isolated using maize Knotted-1 (Kn1) cDNA as a heterologous probe. The Sbh1 cDNA clone is 1515 bp long which is the approximate size of its transcript. Within the homeodomain, the amino acid sequence of a helix-turn-helix structure, and invariant and conserved residues were identified. The deduced SBH1 protein shares a high amino acid identity with KN1 protein (47.0% overall and 87.5% for the homeodomain). Southern hybridization analysis indicated that Sbh1 is a member of a small gene family. The expression of Sbh1 is development- and tissue-specific. The transcript of Sbh1 was present in early-stage somatic embryos, increased prior to cotyledon formation and decreased thereafter. Sbh1 was weakly expressed in soybean stems and hypocotyl but was not detected in other plant tissues and nonembryogenic materials. The enhanced expression during embryogenesis, the homology with maize Kn1 gene, and the regulatory nature of homeodomain proteins suggest that the SBH1 protein plays an important role in plant embryo development.


Subject(s)
Genes, Homeobox , Glycine max/genetics , Plant Proteins/genetics , Soybean Proteins , Transcription Factors , Amino Acid Sequence , Animals , Base Sequence , Caenorhabditis elegans/genetics , Cloning, Molecular , Consensus Sequence , Drosophila melanogaster/genetics , Gene Expression Regulation , Gene Library , Helix-Loop-Helix Motifs/genetics , Molecular Sequence Data , Seeds/physiology , Sequence Homology, Amino Acid , Glycine max/growth & development , Zea mays/genetics
17.
Plant Cell Rep ; 12(2): 84-8, 1993 Jan.
Article in English | MEDLINE | ID: mdl-24202074

ABSTRACT

The effects of osmotic conditioning on both transient expression and stable transformation were evaluated by introducing plasmid DNAs via particle bombardment into embryogenic suspension culture cells of Zea mays (A188 × B73). Placement of cells on an osmoticum-containing medium (0.2 M sorbitol and 0.2 M mannitol) 4 h prior to and 16 h after bombardment resulted in a statistically significant 2.7-fold increase in transient ß-glucuronidase expression. Under these conditions, an average of approximately 9,000 blue foci were obtained from 100 µl packed cell volume of bombarded embryogenic tissue. Osmotic conditioning of the target cells resulted in a 6.8-fold increase in recovery of stably transformed maize clones. Transformed fertile plants and progeny were obtained from several transformed cell lines. We believe the basis of osmotic enhancement of transient expression and stable transformation resulted from plasmolysis of the cells which may have reduced cell damage by preventing extrusion of the protoplasm from bombarded cells.

18.
Plant Physiol ; 100(1): 525-8, 1992 Sep.
Article in English | MEDLINE | ID: mdl-16652993

ABSTRACT

Nitrate or ammonium fertilization significantly increased glutamine synthetase (GS) activity in nonnodulated roots of French bean (Phaseolus vulgaris), soybean (Glycine max), and pea (Pisum sativum). Western analysis revealed substantial GS antibody-positive protein in root extracts that had minimal GS activity, indicating that an inactive form of GS may be present in nonfertilized plants.

19.
Plant Cell Rep ; 11(7): 323-8, 1992 Jul.
Article in English | MEDLINE | ID: mdl-24201431

ABSTRACT

A simple and inexpensive particle bombardment device was constructed for delivery of DNA to plant cells. The Particle Inflow Gun (PIG) is based on acceleration of DNA-coated tungsten particles using pressurized helium in combination with a partial vacuum. The particles are accelerated directly in a helium stream rather than being supported by a macrocarrier. Bombardment parameters were partially optimized using transient expression assays of a ß-glucuronidase gene in maize embryogenic suspension culture and cowpea leaf tissues. High levels of transient expression of the ß-glucuronidase gene were obtained following bombardment of embryogenic suspension cultures of corn and soybean, and leaf tissue of cowpea. Stable transformation of embryogenic tissue of soybean has also been obtained using this bombardment apparatus.

20.
Plant Cell Rep ; 8(10): 586-9, 1990 Mar.
Article in English | MEDLINE | ID: mdl-24232677

ABSTRACT

Embryogenic suspension cultures of cotton (Gossypium hirsutum L.) were subjected to particle bombardment, where high density particles carrying plasmid DNA were accelerated towards the embryogenic plant cells. The plasmid DNA coating the particles encoded hygromycin resistance. One to two weeks following bombardment, embryogenic cotton cells were placed in proliferation medium containing 100 µg/ml hygromycin. Clumps of tissue which grew in the presence of hygromycin were subcultured at low density into fresh hygromycin-containing proliferation medium. Following sequential transfer of embryogenic tissue to development and then germination media, plants were recovered from transgenic embryogenic tissue. Southern hybridization confirmed the presence of the hygromycin resistance gene in embryogenic suspension culture tissue and regenerated plants.

SELECTION OF CITATIONS
SEARCH DETAIL
...