Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetologia ; 51(8): 1544-51, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18493734

ABSTRACT

AIMS/HYPOTHESIS: Diabetic patients are at increased risk of cardiomyopathy, acute myocardial infarction and loss of cardiac progenitor cells (CPCs), but the aetiology is poorly understood. We hypothesised a significant role for mannose-binding lectin (MBL) in cardiomyopathies associated with hyperglycaemia. METHODS: The role of MBL in myocardial ischaemia and reperfusion (MI/R) injury was investigated in wild-type (WT) and MBL-null mice following 2 weeks of streptozotocin-induced hyperglycaemia. RESULTS: Hyperglycaemic WT mice presented with significantly decreased left ventricular ejection fractions and increased serum troponin I levels and myocardial inflammation compared with non-diabetic WT mice following MI/R. Hyperglycaemic MBL-null mice or insulin-treated diabetic WT mice were significantly protected from MI/R injury compared with diabetic WT mice. In an additional study using diabetic WT mice, echocardiographic measurements demonstrated signs of dilative cardiomyopathy, whereas heart:body weight ratios suggested hypertrophic cardiac remodelling after 2 weeks of hyperglycaemia. Immunohistochemical analysis of CPCs showed significantly lower numbers in diabetic WT hearts compared with non-diabetic hearts. Insulin-treated diabetic WT or untreated diabetic MBL-null mice were protected from dilative cardiomyopathy, hypertrophic remodelling and loss of CPCs. CONCLUSIONS/INTERPRETATION: These data demonstrate that MBL may play a critical role in diabetic MI/R injury. Further, the absence of MBL appears to inhibit hypertrophic remodelling and hyperglycaemia-induced loss of CPCs after just 2 weeks of hyperglycaemia in mice.


Subject(s)
Diabetes Mellitus, Experimental/physiopathology , Mannose-Binding Lectin/physiology , Myocardial Ischemia/physiopathology , Reperfusion Injury/physiopathology , Animals , Complement System Proteins/physiology , Crosses, Genetic , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/physiopathology , Diabetic Angiopathies/physiopathology , Disease Models, Animal , Female , Male , Mannose-Binding Lectin/deficiency , Mannose-Binding Lectin/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...