Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phytopathology ; 100(2): 160-71, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20055650

ABSTRACT

ABSTRACT Multivariate random-effects meta-analyses were conducted on 12 years of data from 14 U.S. states to determine the mean yield and test-weight responses of wheat to treatment with propiconazole, prothioconazole, tebuconazole, metconazole, and prothioconazole+tebuconazole. All fungicides led to a significant increase in mean yield and test weight relative to the check (D; P < 0.001). Metconazole resulted in the highest overall yield increase, with a D of 450 kg/ha, followed by prothioconazole+ tebuconazole (444.5 kg/ha), prothioconazole (419.1 kg/ha), tebuconazole (272.6 kg/ha), and propiconazole (199.6 kg/ha). Metconazole, prothioconazole+tebuconazole, and prothioconazole also resulted in the highest increases in test weight, with D values of 17.4 to 19.4 kg/m(3), respectively. On a relative scale, the best three fungicides resulted in an overall 13.8 to 15.0% increase in yield but only a 2.5 to 2.8% increase in test weight. Except for prothioconazole+tebuconazole, wheat type significantly affected the yield response to treatment; depending on the fungicide, D was 110.0 to 163.7 kg/ha higher in spring than in soft-red winter wheat. Fusarium head blight (FHB) disease index (field or plot-level severity) in the untreated check plots, a measure of the risk of disease development in a study, had a significant effect on the yield response to treatment, in that D increased with increasing FHB index. The probability was estimated that fungicide treatment in a randomly selected study will result in a positive yield increase (p(+)) and increases of at least 250 and 500 kg/ha (p(250) and p(500), respectively). For the three most effective fungicide treatments (metconazole, prothioconazole+tebuconazole, and prothioconazole) at the higher selected FHB index, p(+) was very large (e.g., >/=0.99 for both wheat types) but p(500) was considerably lower (e.g., 0.78 to 0.92 for spring and 0.54 to 0.68 for soft-red winter wheat); at the lower FHB index, p(500) for the same three fungicides was 0.34 to 0.36 for spring and only 0.09 to 0.23 for soft-red winter wheat.


Subject(s)
Biomass , Fungicides, Industrial/pharmacology , Fusarium , Triazoles/pharmacology , Triticum/drug effects , Plant Diseases , Seeds/drug effects , Seeds/growth & development , Triticum/growth & development , Triticum/microbiology
2.
Phytopathology ; 98(9): 969-76, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18943734

ABSTRACT

Gibberella zeae, a causal agent of Fusarium head blight (FHB) in wheat and barley, is one of the most economically harmful pathogens of cereals in the United States. In recent years, the known host range of G. zeae has also expanded to noncereal crops. However, there is a lack of information on the population genetic structure of G. zeae associated with noncereal crops and across wheat cultivars. To test the hypothesis that G. zeae populations sampled from barley, wheat, potato, and sugar beet in the Upper Midwest of the United States are not mixtures of species or G. zeae clades, we analyzed sequence data of G. zeae, and confirmed that all populations studied were present in the same clade of G. zeae. Ten variable number tandem repeat (VNTR) markers were used to determine the genetic structure of G. zeae from the four crop populations. To examine the effect of wheat cultivars on the pathogen populations, 227 strains were sampled from 10 subpopulations according to wheat cultivar types. The VNTR markers also were used to analyze the genetic structure of these subpopulations. In all populations, gene (H = 0.453 to 0.612) and genotype diversity (GD = or >0.984) were high. There was little or no indication of linkage disequilibrium (LD) in all G. zeae populations and subpopulations. In addition, high gene flow (Nm) values were observed between cereal and noncereal populations (Nm = 10.69) and between FHB resistant and susceptible wheat cultivar subpopulations (Nm = 16.072), suggesting low population differentiation of G. zeae in this region. Analysis of molecular variance also revealed high genetic variation (>80%) among individuals within populations and subpopulations. However, low genetic variation (<5%) was observed between cereal and noncereal populations and between resistant and susceptible wheat subpopulations. Overall, these results suggest that the populations or subpopulations are likely a single large population of G. zeae affecting crops in the upper Midwest of the United States.


Subject(s)
Beta vulgaris/microbiology , Crops, Agricultural/microbiology , Gibberella/genetics , Hordeum/microbiology , Solanum tuberosum/microbiology , Triticum/microbiology , Fungal Proteins/genetics , Gibberella/classification , Gibberella/isolation & purification , Midwestern United States , Phosphate Transport Proteins/genetics , Phylogeny
3.
Phytopathology ; 98(9): 999-1011, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18943738

ABSTRACT

The effects of propiconazole, prothioconazole, tebuconazole, metconazole, and prothioconazole+tebuconazole (as a tank mix or a formulated premix) on the control of Fusarium head blight index (IND; field or plot-level disease severity) and deoxynivalenol (DON) in wheat were determined. A multivariate random-effects meta-analytical model was fitted to the log-transformed treatment means from over 100 uniform fungicide studies across 11 years and 14 states, and the mean log ratio (relative to the untreated check or tebuconazole mean) was determined as the overall effect size for quantifying fungicide efficacy. Mean log ratios were then transformed to estimate mean percent reduction in IND and DON relative to the untreated check (percent control: C(IND) and C(DON)) and relative to tebuconazole. All fungicides led to a significant reduction in IND and DON (P < 0.001), although there was substantial between-study variability. Prothioconazole+tebuconazole was the most effective fungicide for IND, with a C(IND) of 52%, followed by metconazole (50%), prothioconazole (48%), tebuconazole (40%), and propiconazole (32%). For DON, metconazole was the most effective treatment, with a [Formula: see text](DON) of 45%; prothioconazole+tebuconazole and prothioconazole showed similar efficacy, with C(DON) values of 42 and 43%, respectively; tebuconazole and propiconazole were the least effective, with C(DON) values of 23 and 12%, respectively. All fungicides, with the exception of propiconazole, were significantly more effective than tebuconazole for control of both IND and DON (P < 0.001). Relative to tebuconazole, prothioconazole, metconazole, and tebuconzole+prothioconzole reduced disease index a further 14 to 20% and DON a further 25 to 29%. In general, fungicide efficacy was significantly higher for spring wheat than for soft winter wheat studies; depending on the fungicide, the difference in percent control between spring and soft winter wheat was 5 to 20% for C(IND) and 7 to 16% for C(DON). Based on the mean log ratios and between-study variances, the probability that IND or DON in a treated plot from a randomly selected study was lower than that in the check by a fixed margin was determined, which confirmed the superior efficacy of prothioconazole, metconazole, and tebuconzole+prothioconzole for Fusarium head blight disease and toxin control.


Subject(s)
Fungicides, Industrial/therapeutic use , Fusarium/drug effects , Plant Diseases/microbiology , Triazoles/therapeutic use , Trichothecenes/toxicity , Triticum/microbiology , Meta-Analysis as Topic , Midwestern United States , Multivariate Analysis , Triticum/drug effects
4.
Phytopathology ; 97(2): 211-20, 2007 Feb.
Article in English | MEDLINE | ID: mdl-18944377

ABSTRACT

ABSTRACT A meta-analysis of the effect of tebuconazole (e.g., Folicur 3.6F) on Fusarium head blight and deoxynivalenol (DON) content of wheat grain was performed using data collected from uniform fungicide trials (UFTs) conducted at multiple locations across U.S. wheat-growing regions. Response ratios (mean disease and DON levels from tebuconazole-treated plots, divided by mean disease and DON levels from untreated check plots) were calculated for each of 139 studies for tebuconazole effect on Fusarium head blight index (IND; field or plot-level disease severity, i.e., mean proportion of diseased spikelets per spike) and 101 studies for tebuconazole effect on DON contamination of harvested grain. A random-effects meta-analysis was performed on the log-transformed ratios, and the estimated mean log ratios were transformed to estimate the mean (expected) percent control for IND ( C(IND) ) and DON ( C(DON)). A mixed effects meta-analysis was then done to determine the effects of wheat type (spring versus winter wheat) and disease and DON levels in the controls on the log ratios. Tebuconazole was more effective at limiting IND than DON, with C(IND) and C(DON) values of 40.3 and 21.6%, respectively. The efficacy of tebuconazole as determined by the impact on both IND and DON was greater in spring wheat than in winter wheat (P < 0.01), with a 13.2% higher C(IND) and a 12.4% higher C(DON) in spring wheat than in winter wheat. In general, C(IND) and C(DON) were both at their lowest values (and not significantly different from 0) when mean IND and DON in the controls, respectively, were low (

SELECTION OF CITATIONS
SEARCH DETAIL
...