Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neurochem Int ; 171: 105626, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37838084

ABSTRACT

Neurons and astrocytes work in close metabolic collaboration, linking neurotransmission to brain energy and neurotransmitter metabolism. Dysregulated energy metabolism is a hallmark of the aging brain and may underlie the progressive age-dependent cognitive decline. However, astrocyte and neurotransmitter metabolism remains understudied in aging brain research. In particular, how aging affects metabolism of glutamate, being the primary excitatory neurotransmitter, is still poorly understood. Here we investigated critical aspects of cellular energy metabolism in the aging male mouse hippocampus using stable isotope tracing in vitro. Metabolism of [U-13C]glucose demonstrated an elevated glycolytic capacity of aged hippocampal slices, whereas oxidative [U-13C]glucose metabolism in the TCA cycle was significantly reduced with aging. In addition, metabolism of [1,2-13C]acetate, reflecting astrocyte energy metabolism, was likewise reduced in the hippocampal slices of old mice. In contrast, uptake and subsequent metabolism of [U-13C]glutamate was elevated, suggesting increased capacity for cellular glutamate handling with aging. Finally, metabolism of [15N]glutamate was maintained in the aged slices, demonstrating sustained glutamate nitrogen metabolism. Collectively, this study reveals fundamental alterations in cellular energy and neurotransmitter metabolism in the aging brain, which may contribute to age-related hippocampal deficits.


Subject(s)
Energy Metabolism , Glutamic Acid , Male , Mice , Animals , Glutamic Acid/metabolism , Hippocampus/metabolism , Neurotransmitter Agents/metabolism , Carbon Isotopes/metabolism , Astrocytes/metabolism , Glucose/metabolism , Glutamine/metabolism
2.
Plant J ; 111(4): 936-953, 2022 08.
Article in English | MEDLINE | ID: mdl-35696314

ABSTRACT

In a cross-continental research initiative, including researchers working in Australia and Denmark, and based on joint external funding by a 3-year grant from the Novo Nordisk Foundation, we have used DNA sequencing, extensive chemical profiling and molecular networking analyses across the entire Eremophila genus to provide new knowledge on the presence of natural products and their bioactivities using polypharmocological screens. Sesquiterpenoids, diterpenoids and dimers of branched-chain fatty acids with previously unknown chemical structures were identified. The collection of plant material from the Eremophila genus was carried out according to a 'bioprospecting agreement' with the Government of Western Australia. We recognize that several Eremophila species hold immense cultural significance to Australia's First Peoples. In spite of our best intentions to ensure that new knowledge gained about the genus Eremophila and any potential future benefits are shared in an equitable manner, in accordance with the Nagoya Protocol, we encounter serious dilemmas and potential conflicts in making benefit sharing with Australia's First Peoples a reality.


Subject(s)
Diterpenes , Scrophulariaceae , Australia
3.
Fitoterapia ; 142: 104522, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32088281

ABSTRACT

Worldwide, 463 million people are affected by diabetes of which the majority is diagnosed with Type 2 Diabetes (T2D). T2D can ultimately lead to retinopathy, nephropathy, nerve damage, and amputation of the lower extremities. α-Glucosidase, responsible for converting starch to monosaccharides, is a key therapeutic target for the management of T2D. However, due to substantial side effects of currently marketed drugs, there is an urgent need for the discovery of new α-glucosidase inhibitors. In our ongoing efforts to identify novel α-glucosidase inhibitors from Nature, we are investigating the potential of endophytic filamentous fungi as sustainable sources of hits and/or leads for future antihyperglycemic drugs. Here we report one previously unreported xanthone (5) and two known xanthones (7 and 11) as α-glucosidase inhibitors, isolated from an endophytic Penicillium canescens, recovered from fruits of Juniperus polycarpos. The three xanthones 5, 7, and 11 showed inhibitory activities against α-glucosidase with IC50 values of 38.80 ± 1.01 µM, 32.32 ± 1.01 µM, and 75.20 ± 1.02 µM, respectively. Further pharmacological characterization revealed a mixed-mode inhibition for 5, a competitive inhibition for 7, while 11 acted as a non-competitive inhibitor.


Subject(s)
Glycoside Hydrolase Inhibitors/isolation & purification , Juniperus/microbiology , Penicillium/chemistry , Xanthones/isolation & purification , Drug Evaluation, Preclinical , Endophytes/chemistry , Glycoside Hydrolase Inhibitors/chemistry , Penicillium/isolation & purification , Xanthones/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...