Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Geobiology ; 22(1): e12579, 2024.
Article in English | MEDLINE | ID: mdl-37984450

ABSTRACT

Frutexites-like microstructures are described from the exhumed Late Devonian reef complexes of the northern Canning Basin, Western Australia. Several high-resolution imaging techniques, including X-ray microcomputerised tomography, scanning electron microscopy and X-ray fluorescence microscopy, were used to investigate morphology and composition in two samples. Three types of Frutexites-like microstructures (Types I-III) have been identified. Type I, found lining an early marine cement-filled cavity in fore-reef grainstone facies, consists of dendritic structures formed primarily of coccoid bacteria with filamentous bacteria embedded in sheets of amorphous extracellular polymeric substances (EPS). These ferromanganiferous dendrites have laminated to spheroidal textures. Types II and III are from a toe-of-slope hardground. Type II grew in a crypt between two corals, is also dendritic and composed of bacilliform and filamentous bacteria embedded in an amorphous EPS sheet. The opaqueness of these ferriferous dendrites precludes more detailed description of textures. Type III grew as branching columnar microstromatolites and is composed of entwined filaments of Girvanella, Rothpletzella and Wetheredella with Fe-enriched outer walls that generate Frutexites-like microstructures. Types I and II resemble Frutexites sensu stricto as defined by Maslov (Stromatolites, Trudy Instituta geologicheskikh nauk Akademiya nauk SSR, 1960) and are the result of the consecutive growth and permineralisation of biofilms composed of mixed bacterial communities growing in cryptic habitats. Type III superficially resembles Frutexites sensu stricto based on macroscopic field observations, however, detailed microscopic analysis reveals that it is composed of Fe-enriched tubular walls surrounded by Mn-enriched calcite.


Subject(s)
Bacteria , Calcium Carbonate , Calcium Carbonate/chemistry , Australia , Microscopy, Electron, Scanning , Western Australia
2.
Commun Biol ; 1: 46, 2018.
Article in English | MEDLINE | ID: mdl-30271929

ABSTRACT

The Marine Mesozoic Revolution (MMR, starting ~200 million years ago) changed the ecological structure of sea floor communities due to increased predation pressure. It was thought to have caused the migration of less mobile invertebrates, such as stalked isocrinid crinoids, into deeper marine environments by the end of the Mesozoic. Recent studies questioned this hypothesis, suggesting the MMR was globally asynchronous. Alternatively, Cenozoic occurrences from Antarctica and South America were described as retrograde reversions to Palaeozoic type communities in cool water. Our results provide conclusive evidence that isocrinid migration from shallow to deep water did not occur at the same time all over the world. The description of a substantial new fauna from Antarctica and Australia, from often-overlooked isolated columnals and articulated crinoids, in addition to the first compilation to our knowledge of Cenozoic Southern Hemisphere isocrinid data, demonstrates a continuous record of shallow marine isocrinids from the Cretaceous-Paleogene to the Eocene/Oligocene boundary.

3.
Am J Bot ; 101(9): 1486-97, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25253709

ABSTRACT

UNLABELLED: • PREMISE OF THE STUDY: Globally, the origins of xeromorphic traits in modern angiosperm lineages are obscure but are thought to be linked to the early Neogene onset of seasonally arid climates. Stomatal encryption is a xeromorphic trait that is prominent in Banksia, an archetypal genus centered in one of the world's most diverse ecosystems, the ancient infertile landscape of Mediterranean-climate southwestern Australia.• METHODS: We describe Banksia paleocrypta, a sclerophyllous species with encrypted stomata from silcretes of the Walebing and Kojonup regions of southwestern Australia dated as Late Eocene.• KEY RESULTS: Banksia paleocrypta shows evidence of foliar xeromorphy ∼20 Ma before the widely accepted timing for the onset of aridity in Australia. Species of Banksia subgenus Banksia with very similar leaves are extant in southwestern Australia. The conditions required for silcrete formation infer fluctuating water tables and climatic seasonality in southwestern Australia in the Eocene, and seasonality is supported by the paucity of angiosperm closed-forest elements among the fossil taxa preserved with B. paleocrypta. However, climates in the region during the Eocene are unlikely to have experienced seasons as hot and dry as present-day summers.• CONCLUSIONS: The presence of B. paleocrypta within the center of diversity of subgenus Banksia in edaphically ancient southwestern Australia is consistent with the continuous presence of this lineage in the region for ≥40 Ma, a testament to the success of increasingly xeromorphic traits in Banksia over an interval in which numerous other lineages became extinct.


Subject(s)
Biological Evolution , Climate , Fossils , Phylogeny , Plant Stomata/anatomy & histology , Proteaceae , Water , Adaptation, Physiological , Droughts , Magnoliopsida , Plant Leaves/anatomy & histology , Proteaceae/anatomy & histology , Proteaceae/genetics , Seasons , Temperature , Western Australia
SELECTION OF CITATIONS
SEARCH DETAIL
...