Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 592: 488-494, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28320525

ABSTRACT

BACKGROUND: Biomass burning has been shown to be a major source of poor indoor air quality (IAQ) in developing and higher income countries across the world. Specifically, wood burning for cooking and heating contributes to high indoor concentrations of fine (particles with aerodynamic diameters<2.5µm; PM2.5) and coarse (particles with aerodynamic diameters <10µm and >2.5µm; PMc) particulate matter. Endotoxin, predominantly found within the coarse fraction of airborne particulate matter, is associated with proinflammatory effects and adverse outcomes among susceptible populations. The aim of this study was to assess the efficacy of air filter interventions in reducing indoor PM2.5, PMc, and PMc-associated endotoxin concentrations in homes using a wood stove for primary heating. RESULTS: Homes (n=48) were randomized to receive in-room air filtration units with either a high efficiency filter (i.e. active) or a lower efficiency fiberglass filter (i.e., placebo). The active filter intervention showed a 66% reduction in indoor PM2.5 concentrations (95% CI: 42.2% to 79.7% reduction) relative to the placebo intervention. Both the active and the placebo filters were effective in substantially reducing indoor concentrations of PMc (63.3% and 40.6% average reduction for active and placebo filters, respectively) and PMc-associated endotoxin concentrations (91.8% and 80.4% average reductions, respectively). CONCLUSIONS: These findings support the use of high efficiency air filtration units for reducing indoor PM2.5 in homes using a wood stove for primary heating. We also discovered that using lower efficiency, lower cost filter alternatives can be effective for reducing PMc and airborne endotoxin in homes burning biomass fuel.


Subject(s)
Air Pollution, Indoor/prevention & control , Filtration/instrumentation , Heating , Housing , Air Pollutants/analysis , Particulate Matter/analysis , Random Allocation , Wood
2.
J Occup Environ Hyg ; 9(3): 149-56, 2012.
Article in English | MEDLINE | ID: mdl-22364357

ABSTRACT

Wildland fire base camps commonly house thousands of support personnel for weeks at a time. The selection of the location of these base camps is largely a strategic decision that incorporates many factors, one of which is the potential impact of biomass smoke from the nearby fire event. Biomass smoke has many documented adverse health effects due, primarily, to high levels of fine particulate matter (PM(2.5)). Minimizing particulate matter exposure to potentially susceptible individuals working as support personnel in the base camp is vital. In addition to smoke from nearby wildland fires, base camp operations have the potential to generate particulate matter via vehicle emissions, dust, and generator use. We monitored particulate matter at three base camps during the fire season of 2009 in Washington, Oregon, and California. During the sampling events, 1-min time-weighted averages of PM(2.5) and particle counts from three size fractions (0.3-0.5 microns, 0.5-1.0 microns, and 1.0-2.5 microns) were measured. Results showed that all PM size fractions (as well as overall PM(2.5) concentrations) were higher during the overnight hours, a trend that was consistent at all camps. Our results provide evidence of camp-based, site-specific sources of PM(2.5) that could potentially exceed the contributions from the nearby wildfire. These exposures could adversely impact wildland firefighters who sleep in the camp, as well as the camp support personnel, who could include susceptible individuals. A better understanding of the sources and patterns of poor air quality within base camps would help to inform prevention strategies to reduce personnel exposures.


Subject(s)
Firefighters , Fires , Occupational Exposure/analysis , Particulate Matter/analysis , California , Environmental Monitoring , Humans , Oregon , Washington
3.
Aerosol Air Qual Res ; 11(3): 315-322, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-25364330

ABSTRACT

The US Environmental Protection Agency (EPA) has designated a handful of instruments as Federal Reference or Federal Equivalency Methods (FRM and FEM, respectively) for the monitoring of fine particulate matter (PM2.5). More commonly used for indoor exposure assessment studies are optical scanning devices such as the DustTrak (TSI) due to the their portability and affordability. It is recommended by the manufacturer of these instruments that a "correction factor" be applied when assessing source-specific conditions. In this study, DustTraks were collocated with multiple samplers in various environments in an effort to establish an indoor, wood smoke-source specific correction factor. The DustTrak was found to report PM2.5 levels on average 1.6 times higher than a filter based method in two indoor sampling programs. The DustTrak also reported indoor PM2.5 concentrations 1.7 times higher than a FRM sampler during a regional forest fire event. These real-world scenarios give a correction factor within a reasonable range of the results of a controlled laboratory experiment in which DustTraks reported PM2.5 approximately 2 times higher than a FEM. Our indoor wood smoke-specific correction factor of 1.65 will allow for DustTraks to be confidently used in quantifying PM2.5 exposures within indoor environments predominantly impacted by wood smoke.

4.
Aquat Toxicol ; 100(1): 101-11, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20701988

ABSTRACT

Organophosphate pesticides (OPs) are environmental toxicants known to inhibit the catalytic activity of acetylcholinesterase (AChE) resulting in hypercholinergic toxicity symptoms. In developing embryos, OPs have been hypothesized to affect both cholinergic and non-cholinergic pathways. In order to understand the neurological pathways affected by OP exposure during embryogenesis, we developed a subacute model of OP developmental exposure in zebrafish by exposing embryos to a dose of the OP metabolite chlorpyrifos-oxon (CPO) that is non-lethal and significantly inhibited AChE enzymatic activity compared to control embryos (43% at 1 day post-fertilization (dpf) and 11% at 2dpf). Phenotypic analysis of CPO-exposed embryos demonstrated that embryonic growth, as analyzed by gross morphology, was normal in 85% of treated embryos. Muscle fiber formation was similar to control embryos as analyzed by birefringence, and nicotinic acetylcholine receptor (nAChR) cluster formation was quantitatively similar to control embryos as analyzed by α-bungarotoxin staining. These results indicate that partial AChE activity during the early days of zebrafish development is sufficient for general development, muscle fiber, and nAChR development. Rohon-Beard (RB) sensory neurons exhibited aberrant peripheral axon extension and gene expression profiling suggests that several genes responsible for RB neurogenesis are down-regulated. Stability of CPO in egg water at 28.5 °C was determined by HPLC-UV-MS analysis which revealed that the CPO concentration used in our studies hydrolyzes in egg water with a half-life of 1 day. The result that developmental CPO exposure affected RB neurogenesis without affecting muscle fiber or nAChR cluster formation demonstrates that zebrafish are a strong model system for characterizing subtle neurological pathologies resulting from environmental toxicants.


Subject(s)
Chlorpyrifos/analogs & derivatives , Insecticides/toxicity , Sensory Receptor Cells/drug effects , Zebrafish/growth & development , Animals , Chlorpyrifos/toxicity , Dose-Response Relationship, Drug , Embryo, Nonmammalian/abnormalities , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/ultrastructure , Embryonic Development/drug effects , Gene Expression/drug effects , Neurogenesis/drug effects , Neurogenesis/genetics , Neuromuscular Junction/drug effects , Neuromuscular Junction/growth & development , Organophosphates/toxicity , Sensory Receptor Cells/ultrastructure , Toxicity Tests , Water Pollutants, Chemical/toxicity , Zebrafish/abnormalities , Zebrafish/embryology
SELECTION OF CITATIONS
SEARCH DETAIL
...