Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 7(9): 5338-46, 2015 Mar 11.
Article in English | MEDLINE | ID: mdl-25695286

ABSTRACT

Titanium-based microporous heterogeneous catalysts are widely studied but are often limited by the accessibility of reactants to active sites. Metal-organic frameworks (MOFs), such as MIL-125 (Ti), exhibit enhanced surface areas due to their high intrinsic microporosity, but the pore diameters of most microporous MOFs are often too small to allow for the diffusion of larger reactants (>7 Å) relevant to petroleum and biomass upgrading. In this work, hierarchical microporous MIL-125 exhibiting significantly enhanced interparticle mesoporosity was synthesized using a chelating-free, vapor-assisted crystallization method. The resulting hierarchical MOF was examined as an active catalyst for the oxidation of dibenzothiophene (DBT) with tert-butyl hydroperoxide and outperformed the solely microporous analogue. This was attributed to greater access of the substrate to surface active sites, as the pores in the microporous analogues were of inadequate size to accommodate DBT. Moreover, thiophene adsorption studies suggested the mesoporous MOF contained larger amounts of unsaturated metal sites that could enhance the observed catalytic activity.

2.
Langmuir ; 30(39): 11776-84, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25222282

ABSTRACT

Decoration of graphene oxide (GO) sheets with Ag nanoparticles has been demonstrated using a simple sonication technique. By changing the ratio between Ag-decorated-GO and GO, a series of Ag-decorated-GO samples with different Ag loadings were synthesized. These Ag-decorated-GO samples were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD) spectroscopy, thermal gravimetric analysis (TGA), and differential scanning calorimetric (DSC) techniques. TEM analysis showed that Ag nanoparticles were evenly distributed on GO sheets, and the size analysis of the particles using multiple TEM images indicated that Ag nanoparticles have an average size of 6-7 nm. TEM analysis also showed that Ag nanoparticles migrated from Ag-decorated-GO to later-added GO sheets. In XRD, all the Ag-decorated GO samples showed the characteristic peaks related to GO and face-centered-cubic (fcc) Ag. Thermal analysis showed peaks related to the combustion of graphitic carbon shifted to lower temperatures after GO sheets were decorated with Ag nanoparticles. In addition, further experiments performed using Ag-decorated-GO and multiwalled carbon nanotubes (MWNTs) confirmed that Ag nanoparticles migrated from Ag-decorated-GO to later-added carbon nanotubes without a noticeable coalescence of Ag nanoparticles.

3.
ChemSusChem ; 7(4): 1114-24, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24591345

ABSTRACT

Tunable, multifunctional materials able to capture CO2 and subsequently catalyze its conversion to formic acid were synthesized by the modification of branched polyethyleneimine (PEI) with an iminophosphine ligand coordinated to an Ir precatalyst. The molecular weight of the PEI backbone was an important component for material stability and catalytic activity, which were inversely related. The amine functionalities on PEI served three roles: 1) primary amines were used to tether the ligand and precatalyst, 2) amines were used to capture CO2 , and 3) amines served as a base for formate stabilization during catalysis. Ligand studies on imine and phosphine based ligands showed that a bidentate iminophosphine ligand resulted in the highest catalytic activity. X-ray photoelectron spectroscopy revealed that an increase in Ir 4f binding energy led to an increase in catalytic activity, which suggests that the electronics of the metal center play a significant role in catalysis. Catalyst loading studies revealed that there is a critical balance between free amines and ligand-metal sites that must be reached to optimize catalytic activity. Thus, it was found that the CO2 capture and conversion abilities of these materials could be optimized for reaction conditions by tuning the structure of the PEI-tethered materials.


Subject(s)
Carbon Dioxide/chemistry , Carbon Dioxide/isolation & purification , Iridium/chemistry , Organometallic Compounds/chemistry , Phosphines/chemistry , Polyethyleneimine/chemistry , Adsorption , Catalysis , Ligands , Water/chemistry
4.
ACS Appl Mater Interfaces ; 5(21): 11479-87, 2013 Nov 13.
Article in English | MEDLINE | ID: mdl-24111792

ABSTRACT

This work describes a novel method for the preparation of titanium oxide nanoparticles supported on amorphous carbon with nanoporosity (Ti/NC) via the post-synthetic modification of a Zn-based MOF with an amine functionality, IRMOF-3, with titanium isopropoxide followed by its carbothermal pyrolysis. This material exhibited high purity, high surface area (>1000 m(2)/g), and a high dispersion of metal oxide nanoparticles while maintaining a small particle size (~4 nm). The material was shown to be a promising catalyst for oxidative desulfurization of diesel using dibenzothiophene as a model compound as it exhibited enhanced catalytic activity as compared with titanium oxide supported on activated carbon via the conventional incipient wetness impregnation method. The formation mechanism of Ti/NC was also proposed based on results obtained when the carbothermal reduction temperature was varied.


Subject(s)
Carbon/chemistry , Catalysis , Metal Nanoparticles/chemistry , Titanium/chemistry , Oxidation-Reduction , Temperature
5.
ACS Nano ; 5(10): 8100-7, 2011 Oct 25.
Article in English | MEDLINE | ID: mdl-21932790

ABSTRACT

There have been multiple conflicting reports about the biocompatibility and antimicrobial activity of graphene oxide. To address this, we conducted a study to characterize the antimicrobial properties of graphene oxide (GO) and its biocompatibility with mammalian cells. When GO was added to a bacterial culture at 25 µg/mL, the results showed that bacteria grew faster and to a higher optical density than cultures without GO. Scanning electron microscopy indicated that bacteria formed dense biofilms in the presence of GO. This was shown by a large mass of aggregated cells and extracellular polymeric material. Bacterial growth on filters coated with 25 and 75 µg of GO grew 2 and 3 times better than on filters without GO. Closer analysis showed that bacteria were able to attach and proliferate preferentially in areas containing the highest GO levels. Graphene oxide films failed to produce growth inhibition zones around them, indicating a lack of antibacterial properties. Also, bacteria were able to grow on GO films to 9.5 × 10(9) cells from an initial inoculation of 1.0 × 10(6), indicating that it also lacks bacteriostatic activity. Thus, silver-coated GO films were able to produce clearing zones and cell death. Also, graphene oxide was shown to greatly enhance the attachment and proliferation of mammalian cells. This study conclusively demonstrates that graphene oxide does not have intrinsic antibacterial, bacteriostatic, and cytotoxic properties in both bacteria and mammalian cells. Furthermore, graphene oxide acts as a general enhancer of cellular growth by increasing cell attachment and proliferation.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Graphite/chemistry , Graphite/pharmacology , Oxides/chemistry , Animals , Anti-Bacterial Agents/toxicity , Biological Assay , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Coated Materials, Biocompatible/toxicity , Escherichia coli/cytology , Escherichia coli/drug effects , Graphite/toxicity , HT29 Cells , Humans , Silver/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...