Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pharmacol ; 105(2): 84-96, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-37977823

ABSTRACT

The zebrafish (Danio rerio) histamine H1 receptor gene (zfH1R) was cloned in 2007 and reported to be involved in fish locomotion. Yet, no detailed characterization of its pharmacology and signaling properties have so far been reported. In this study, we pharmacologically characterized the zfH1R expressed in HEK-293T cells by means of [3H]-mepyramine binding and G protein-signaling assays. The zfH1R [dissociation constant (KD), 0.7 nM] displayed similar affinity for the antagonist [3H]-mepyramine as the human histamine H1 receptor (hH1R) (KD, 1.5 nM), whereas the affinity for histamine is 100-fold higher than for the human H1R. The zfH1R couples to Gαq/11 proteins and activates several reporter genes, i.e., NFAT, NFÏ°B, CRE, VEGF, COX-2, SRE, and AP-1, and zfH1R-mediated signaling is prevented by the Gαq/11 inhibitor YM-254890 and the antagonist mepyramine. Molecular modeling of the zfH1R and human H1R shows that the binding pockets are identical, implying that variations along the ligand binding pathway could underly the differences in histamine affinity instead. Targeting differentially charged residues in extracellular loop 2 (ECL2) using site-directed mutagenesis revealed that Arg21045x55 is most likely involved in the binding process of histamine in zfH1R. This study aids the understanding of the pharmacological differences between H1R orthologs and the role of ECL2 in histamine binding and provides fundamental information for the understanding of the histaminergic system in the zebrafish. SIGNIFICANCE STATEMENT: The use of the zebrafish as in vivo models in neuroscience is growing exponentially, which asks for detailed characterization of the aminergic neurotransmitter systems in this model. This study is the first to pharmacologically characterize the zebrafish histamine H1 receptor after expression in HEK-293T cells. The results show a high pharmacological and functional resemblance with the human ortholog but also reveal interesting structural differences and unveils an important role of the second extracellular loop in histamine binding.


Subject(s)
Histamine , Receptors, Histamine H1 , Animals , Humans , Receptors, Histamine H1/genetics , Receptors, Histamine H1/metabolism , Pyrilamine/pharmacology , Pyrilamine/metabolism , Zebrafish , Signal Transduction
2.
ACS Chem Neurosci ; 14(4): 645-656, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36702158

ABSTRACT

The human histamine H3 receptor (hH3R) is predominantly expressed in the CNS, where it regulates the synthesis and release of histamine and other neurotransmitters. Due to its neuromodulatory role, the hH3R has been associated with various CNS disorders, including Alzheimer's and Parkinson's disease. Markedly, the hH3R gene undergoes extensive splicing, resulting in 20 isoforms, of which 7TM isoforms exhibit variations in the intracellular loop 3 (IL3) and/or C-terminal tail. Particularly, hH3R isoforms that display variations in IL3 (e.g., hH3R-365) are shown to differentially signal via Gαi-dependent pathways upon binding of biased agonists (e.g., immepip, proxifan, imetit). Nevertheless, the mechanisms underlying biased agonism at hH3R isoforms remain unknown. Using a structure-function relationship study with a broad range of H3R agonists, we thereby explored determinants underlying isoform bias at hH3R isoforms that exhibit variations in IL3 (i.e., hH3R-445, -415, -365, and -329) in a Gαi-dependent pathway (cAMP inhibition). Hence, we systematically characterized hH3R isoforms on isoform bias by comparing various ligand properties (i.e., structural and molecular) to the degree of isoform bias. Importantly, our study provides novel insights into the structural and molecular basis of receptor isoform bias, highlighting the importance to study GPCRs with multiple isoforms to better tailor drugs.


Subject(s)
Histamine , Receptors, Histamine H3 , Humans , Receptors, Histamine H3/genetics , Receptors, Histamine H3/chemistry , Receptors, Histamine H3/metabolism , Receptors, Histamine , Protein Isoforms/metabolism , Ligands , Histamine Agonists/pharmacology
3.
Medchemcomm ; 10(2): 234-251, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30881612

ABSTRACT

Previously, we have shown that 1-substituted-[4-(7-phenoxyheptylpiperazin-1-yl)butyl]guanidine with electron withdrawing substituents at position 4 in the benzyl moiety exhibits high in vitro affinities toward the guinea pig jejunal histamine H3 receptor with pA 2 ranging from 8.49 to 8.43. Here, we present data on the impact of replacement of the piperazine scaffold by the piperidine ring (compounds 2a and 2b), moving benzyl- and 4-trifluoromethylbenzyl substituents from position 1 to 3 of the guanidine moiety (compounds 2c and 2d), which decreases the guanidine basicity (compound 2e), and the influence of individual synthons (compounds 2f-h), present in the lead compounds 1b and 1c, on the antagonistic activity against the histamine H3 receptor. Additionally, the most active compounds 1a, 1c, and 1d were evaluated for their affinity to the rat histamine H3 receptor and the human histamine H3 and H4 receptors. It was also shown that compounds 1a, 1c and 1d, given parenterally for five days, reduced the food intake of rats and did not influence the brain histamine or noradrenaline concentrations; however, significantly reduced serotonin and dopamine concentrations were found in rats administered with compounds 1a and 1c, respectively.

4.
Int J Mol Sci ; 19(4)2018 Apr 19.
Article in English | MEDLINE | ID: mdl-29671795

ABSTRACT

Presynaptic histamine H3 receptors (H3R) act as auto- or heteroreceptors controlling, respectively, the release of histamine and of other neurotransmitters in the central nervous system (CNS). The extracellular levels of several neurotransmitters are enhanced by H3R antagonists, and there is a great interest for potent, brain-penetrating H3 receptor antagonists/inverse agonists to compensate for the neurotransmitter deficits present in various neurological disorders. We have shown that 1-[(benzylfuran-2-yl)methyl]piperidinyl-4-oxyl- and benzyl- derivatives of N-propylpentan-1-amines exhibit high in vitro potencies toward the guinea pig H3 receptor (jejunum), with pA2 = 8.47 and 7.79, respectively (the reference compound used was thioperamide with pA2 = 8.67). Furthermore, following the replacement of 4-hydroxypiperidine with a 3-(methylamino)propyloxy chain, the pA2 value for the first group decreased, whereas it increased for the second group. Here, we present data on the impact of elongating the aliphatic chain between the nitrogen of 4-hydroxypiperidine or 3-(methylamino)propan-1-ol and the lipophilic residue. Additionally, the most active compound in this series of non-imidazole H3 receptor antagonists/inverse agonists, i.e., ADS-003, was evaluated for its affinity to the recombinant rat and human histamine H3 receptors transiently expressed in HEK-293T cells. It was shown that ADS-003, given parenterally for 5 days, reduced the food intake of rats, as well as changed histamine and noradrenaline concentrations in the rats’ brain in a manner and degree similar to the reference H3 antagonist Ciproxifan.


Subject(s)
Histamine H3 Antagonists/chemistry , Histamine H3 Antagonists/pharmacology , Piperidines/chemistry , Piperidines/pharmacology , Receptors, Histamine H3/metabolism , Amination , Animals , Guinea Pigs , HEK293 Cells , Humans , Male , Rats , Rats, Wistar , Structure-Activity Relationship
5.
Molecules ; 23(2)2018 Feb 03.
Article in English | MEDLINE | ID: mdl-29401659

ABSTRACT

H3 receptors present on histaminergic and non-histaminergic neurons, act as autoreceptors or heteroreceptors controlling neurotransmitter release and synthesis. Previous, studies have found that the compound N-methyl-N-3-phenylalkyl-2-[2-(4-n-propylpiperazin-1-yl)-1,3-thiazol-5-yl]ethan-1-amine (ADS-531, 2c) exhibits high in vitro potency toward H3 guinea pig jejunal receptors, with pA2 = 8.27. To optimize the structure of the lead compound ADS-531, a series of 5-substituted-2-thiazol-4-n-propylpiperazines 3 were synthesized and subjected to in vitro pharmacological characterization; the alkyl chain between position 2 of the thiazole ring and the terminal secondary N-methylamino function was elongated from three to four methylene groups and the N-methylamino functionality was substituted by benzyl-, 2-phenylethyl-, and 3-phenyl-propyl- moieties. SAR studies on novel non-imidazole, 5-substituted-2-thiazol-4-n-propyl-piperazines 3 showed that the most active compound 3a (pA2 = 8.38), additionally possessed a weak competitive H1-antagonistic activity. Therefore, compound ADS-531, which did not exhibit any H1-antagonistic activity, was chosen for further evaluation for its affinity to the recombinant rat and human histamine H3 receptors (rH3R and hH3R, respectively). ADS-531 exhibited nanomolar affinity for both rH3R and hH3R receptors. It was also shown that, ADS-531 given subchronically to rats (s.c. 3 mg/kg, 5 days) penetrated the brain, where it affected dopamine, noradrenaline and serotonin concentration; however, it did not affect histamine concentration nor feeding behavior.


Subject(s)
Brain/drug effects , Histamine Antagonists/chemical synthesis , Piperazines/chemical synthesis , Receptors, Histamine H3/metabolism , Thiazoles/chemical synthesis , Animals , Blood-Brain Barrier/metabolism , Brain/cytology , Brain/metabolism , Brain Chemistry/physiology , Dopamine/metabolism , Feeding Behavior/physiology , Guinea Pigs , Histamine Antagonists/pharmacology , Humans , Injections, Subcutaneous , Jejunum/drug effects , Jejunum/metabolism , Ligands , Male , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Norepinephrine/metabolism , Permeability , Piperazines/pharmacology , Rats , Recombinant Proteins/metabolism , Serotonin/metabolism , Structure-Activity Relationship , Thiazoles/pharmacology
6.
Sci Rep ; 6: 28288, 2016 06 24.
Article in English | MEDLINE | ID: mdl-27339552

ABSTRACT

The ability of scoring functions to correctly select and rank docking poses of small molecules in protein binding sites is highly target dependent, which presents a challenge for structure-based drug discovery. Here we describe a virtual screening method that combines an energy-based docking scoring function with a molecular interaction fingerprint (IFP) to identify new ligands based on G protein-coupled receptor (GPCR) crystal structures. The consensus scoring method is prospectively evaluated by: 1) the discovery of chemically novel, fragment-like, high affinity histamine H1 receptor (H1R) antagonists/inverse agonists, 2) the selective structure-based identification of ß2-adrenoceptor (ß2R) agonists, and 3) the experimental validation and comparison of the combined and individual scoring approaches. Systematic retrospective virtual screening simulations allowed the definition of scoring cut-offs for the identification of H1R and ß2R ligands and the selection of an optimal ß-adrenoceptor crystal structure for the discrimination between ß2R agonists and antagonists. The consensus approach resulted in the experimental validation of 53% of the ß2R and 73% of the H1R virtual screening hits with up to nanomolar affinities and potencies. The selective identification of ß2R agonists shows the possibilities of structure-based prediction of GPCR ligand function by integrating protein-ligand binding mode information.


Subject(s)
Drug Evaluation, Preclinical/methods , Receptors, G-Protein-Coupled/metabolism , User-Computer Interface , Adrenergic beta-Agonists/chemistry , Adrenergic beta-Agonists/pharmacology , Adrenergic beta-Antagonists/chemistry , Adrenergic beta-Antagonists/pharmacology , Binding Sites , Computer Simulation , Crystallography, X-Ray , Drug Discovery , HEK293 Cells , Histamine Agonists/chemistry , Histamine Agonists/pharmacology , Histamine H1 Antagonists/chemistry , Histamine H1 Antagonists/pharmacology , Humans , Ligands , Models, Molecular , Molecular Docking Simulation , Protein Binding , Radioligand Assay , Receptors, Adrenergic, beta/chemistry , Receptors, Adrenergic, beta/genetics , Receptors, Adrenergic, beta/metabolism , Receptors, Histamine H1/chemistry , Receptors, Histamine H1/genetics , Receptors, Histamine H1/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
7.
Bioorg Med Chem ; 20(2): 933-41, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22182578

ABSTRACT

Salbutamol is a well-known ß(2) adrenoceptor (ß(2)AR) partial agonist. We synthesized two boron-containing salbutamol derivatives (BCSDs) with greater potency and efficacy, compared to salbutamol, for inducing ß(2)AR-mediated smooth-muscle relaxation in guinea-pig tracheal rings. However, the mechanism involved in this pharmacological effect remains unclear. In order to gain insight, we carried out binding and functional assays for BCSDs in HEK-293T cells transfected with the human ß(2)AR (hß(2)AR). The transfected hß(2)AR showed similar affinity for BCSDs and salbutamol, but adenosine 3',5'-cyclic phosphate (cAMP) accumulation induced by both BCSDs was similar to that elicited by isoproterenol and greater than that induced by salbutamol. The boron-containing precursors (boric and phenylboronic acids, 100 µM) had no significant effect on salbutamol binding or salbutamol-induced cAMP accumulation. These experimental results are in agreement with theoretical docking simulations on lipid bilayer membrane-embedded hß(2)AR structures. These receptors showed slightly higher affinity for BCSDs than for salbutamol. An essential change between putative active and inactive conformational states depended on the interaction of the tested ligands with the fifth, sixth and seventh transmembrane domains. Overall, these data suggest that BCSDs induce and stabilize conformational states of the hß(2)AR that are highly capable of stimulating cAMP production.


Subject(s)
Adrenergic beta-2 Receptor Agonists/chemistry , Albuterol/analogs & derivatives , Boron/chemistry , Receptors, Adrenergic, beta-2/chemistry , Adrenergic beta-2 Receptor Agonists/chemical synthesis , Adrenergic beta-2 Receptor Agonists/pharmacology , Albuterol/chemical synthesis , Albuterol/pharmacology , Allosteric Regulation , Binding Sites , Cell Line , Cyclic AMP/metabolism , Humans , Molecular Dynamics Simulation , Protein Binding/drug effects , Protein Structure, Tertiary , Receptors, Adrenergic, beta-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...