Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Intensive Care Med ; 50(5): 687-696, 2024 May.
Article in English | MEDLINE | ID: mdl-38647548

ABSTRACT

PURPOSE: The purpose of this study was to determine associations between markers of inflammation and endogenous anticoagulant activity with delirium and coma during critical illness. METHODS: In this prospective cohort study, we enrolled adults with respiratory failure and/or shock treated in medical or surgical intensive care units (ICUs) at 5 centers. Twice per day in the ICU, and daily thereafter, we assessed mental status using the Richmond Agitation Sedation Scale (RASS) and the Confusion Assessment Method-Intensive Care Unit (CAM-ICU). We collected blood samples on study days 1, 3, and 5, measuring levels of C-reactive protein (CRP), interferon gamma (IFN-γ), interleukin (IL)-1 beta (IL-1ß), IL-6, IL-8, IL-10, IL-12, matrix metalloproteinase-9 (MMP-9), tumor necrosis factor-alpha (TNF-α), tumor necrosis factor receptor 1 (TNFR1), and protein C using validated protocols. We used multinomial logistic regression to analyze associations between biomarkers and the odds of delirium or coma versus normal mental status the following day, adjusting for age, sepsis, Sequential Organ Failure Assessment (SOFA), study day, corticosteroids, and sedatives. RESULTS: Among 991 participants with a median age (interquartile range, IQR) of 62 [53-72] years and enrollment SOFA of 9 [7-11], higher concentrations of IL-6 (odds ratio [OR] [95% CI]: 1.8 [1.4-2.3]), IL-8 (1.3 [1.1-1.5]), IL-10 (1.5 [1.2-1.8]), TNF-α (1.2 [1.0-1.4]), and TNFR1 (1.3 [1.1-1.6]) and lower concentrations of protein C (0.7 [0.6-0.8])) were associated with delirium the following day. Higher concentrations of CRP (1.4 [1.1-1.7]), IFN-γ (1.3 [1.1-1.5]), IL-6 (2.3 [1.8-3.0]), IL-8 (1.8 [1.4-2.3]), and IL-10 (1.5 [1.2-2.0]) and lower concentrations of protein C (0.6 [0.5-0.8]) were associated with coma the following day. IL-1ß, IL-12, and MMP-9 were not associated with mental status. CONCLUSION: Markers of inflammation and possibly endogenous anticoagulant activity are associated with delirium and coma during critical illness.


Subject(s)
Biomarkers , Critical Illness , Delirium , Inflammation , Humans , Delirium/blood , Delirium/etiology , Male , Female , Middle Aged , Prospective Studies , Aged , Biomarkers/blood , Inflammation/blood , Intensive Care Units/statistics & numerical data , C-Reactive Protein/analysis , Coma/blood , Coma/etiology
2.
Lancet Respir Med ; 10(4): 367-377, 2022 04.
Article in English | MEDLINE | ID: mdl-35026177

ABSTRACT

BACKGROUND: Two acute respiratory distress syndrome (ARDS) subphenotypes (hyperinflammatory and hypoinflammatory) with distinct clinical and biological features and differential treatment responses have been identified using latent class analysis (LCA) in seven individual cohorts. To facilitate bedside identification of subphenotypes, clinical classifier models using readily available clinical variables have been described in four randomised controlled trials. We aimed to assess the performance of these models in observational cohorts of ARDS. METHODS: In this observational, multicohort, retrospective study, we validated two machine-learning clinical classifier models for assigning ARDS subphenotypes in two observational cohorts of patients with ARDS: Early Assessment of Renal and Lung Injury (EARLI; n=335) and Validating Acute Lung Injury Markers for Diagnosis (VALID; n=452), with LCA-derived subphenotypes as the gold standard. The primary model comprised only vital signs and laboratory variables, and the secondary model comprised all predictors in the primary model, with the addition of ventilatory variables and demographics. Model performance was assessed by calculating the area under the receiver operating characteristic curve (AUC) and calibration plots, and assigning subphenotypes using a probability cutoff value of 0·5 to determine sensitivity, specificity, and accuracy of the assignments. We also assessed the performance of the primary model in EARLI using data automatically extracted from an electronic health record (EHR; EHR-derived EARLI cohort). In Large Observational Study to Understand the Global Impact of Severe Acute Respiratory Failure (LUNG SAFE; n=2813), a multinational, observational ARDS cohort, we applied a custom classifier model (with fewer variables than the primary model) to determine the prognostic value of the subphenotypes and tested their interaction with the positive end-expiratory pressure (PEEP) strategy, with 90-day mortality as the dependent variable. FINDINGS: The primary clinical classifier model had an area under receiver operating characteristic curve (AUC) of 0·92 (95% CI 0·90-0·95) in EARLI and 0·88 (0·84-0·91) in VALID. Performance of the primary model was similar when using exclusively EHR-derived predictors compared with manually curated predictors (AUC=0·88 [95% CI 0·81-0·94] vs 0·92 [0·88-0·97]). In LUNG SAFE, 90-day mortality was higher in patients assigned the hyperinflammatory subphenotype than in those with the hypoinflammatory phenotype (414 [57%] of 725 vs 694 [33%] of 2088; p<0·0001). There was a significant treatment interaction with PEEP strategy and ARDS subphenotype (p=0·041), with lower 90-day mortality in the high PEEP group of patients with the hyperinflammatory subphenotype (hyperinflammatory subphenotype: 169 [54%] of 313 patients in the high PEEP group vs 127 [62%] of 205 patients in the low PEEP group; hypoinflammatory subphenotype: 231 [34%] of 675 patients in the high PEEP group vs 233 [32%] of 734 patients in the low PEEP group). INTERPRETATION: Classifier models using clinical variables alone can accurately assign ARDS subphenotypes in observational cohorts. Application of these models can provide valuable prognostic information and could inform management strategies for personalised treatment, including application of PEEP, once prospectively validated. FUNDING: US National Institutes of Health and European Society of Intensive Care Medicine.


Subject(s)
Acute Lung Injury , Respiratory Distress Syndrome , Humans , Machine Learning , Positive-Pressure Respiration , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/therapy , Retrospective Studies
3.
Thorax ; 77(1): 13-21, 2022 01.
Article in English | MEDLINE | ID: mdl-34253679

ABSTRACT

RATIONALE: Using latent class analysis (LCA), two subphenotypes of acute respiratory distress syndrome (ARDS) have consistently been identified in five randomised controlled trials (RCTs), with distinct biological characteristics, divergent outcomes and differential treatment responses to randomised interventions. Their existence in unselected populations of ARDS remains unknown. We sought to identify subphenotypes in observational cohorts of ARDS using LCA. METHODS: LCA was independently applied to patients with ARDS from two prospective observational cohorts of patients admitted to the intensive care unit, derived from the Validating Acute Lung Injury markers for Diagnosis (VALID) (n=624) and Early Assessment of Renal and Lung Injury (EARLI) (n=335) studies. Clinical and biological data were used as class-defining variables. To test for concordance with prior ARDS subphenotypes, the performance metrics of parsimonious classifier models (interleukin 8, bicarbonate, protein C and vasopressor-use), previously developed in RCTs, were evaluated in EARLI and VALID with LCA-derived subphenotypes as the gold-standard. RESULTS: A 2-class model best fit the population in VALID (p=0.0010) and in EARLI (p<0.0001). Class 2 comprised 27% and 37% of the populations in VALID and EARLI, respectively. Consistent with the previously described 'hyperinflammatory' subphenotype, Class 2 was characterised by higher proinflammatory biomarkers, acidosis and increased shock and worse clinical outcomes. The similarities between these and prior RCT-derived subphenotypes were further substantiated by the performance of the parsimonious classifier models in both cohorts (area under the curves 0.92-0.94). The hyperinflammatory subphenotype was associated with increased prevalence of chronic liver disease and neutropenia and reduced incidence of chronic obstructive pulmonary disease. Measurement of novel biomarkers showed significantly higher levels of matrix metalloproteinase-8 and markers of endothelial injury in the hyperinflammatory subphenotype, whereas, matrix metalloproteinase-9 was significantly lower. CONCLUSION: Previously described subphenotypes are generalisable to unselected populations of non-trauma ARDS.


Subject(s)
Acute Lung Injury , Respiratory Distress Syndrome , Biomarkers , Humans , Latent Class Analysis , Prospective Studies , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/etiology
4.
JCI Insight ; 7(2)2022 01 25.
Article in English | MEDLINE | ID: mdl-34874923

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a common cause of respiratory failure yet has few pharmacologic therapies, reflecting the mechanistic heterogeneity of lung injury. We hypothesized that damage to the alveolar epithelial glycocalyx, a layer of glycosaminoglycans interposed between the epithelium and surfactant, contributes to lung injury in patients with ARDS. Using mass spectrometry of airspace fluid noninvasively collected from mechanically ventilated patients, we found that airspace glycosaminoglycan shedding (an index of glycocalyx degradation) occurred predominantly in patients with direct lung injury and was associated with duration of mechanical ventilation. Male patients had increased shedding, which correlated with airspace concentrations of matrix metalloproteinases. Selective epithelial glycocalyx degradation in mice was sufficient to induce surfactant dysfunction, a key characteristic of ARDS, leading to microatelectasis and decreased lung compliance. Rapid colorimetric quantification of airspace glycosaminoglycans was feasible and could provide point-of-care prognostic information to clinicians and/or be used for predictive enrichment in clinical trials.


Subject(s)
Glycocalyx/metabolism , Glycosaminoglycans , Pulmonary Atelectasis , Respiratory Distress Syndrome , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Animals , Duration of Therapy , Female , Glycosaminoglycans/analysis , Glycosaminoglycans/metabolism , Humans , Lung Diseases, Interstitial/etiology , Lung Diseases, Interstitial/metabolism , Male , Mice , Predictive Value of Tests , Prognosis , Pulmonary Atelectasis/diagnosis , Pulmonary Atelectasis/etiology , Pulmonary Atelectasis/prevention & control , Reproducibility of Results , Respiration, Artificial/adverse effects , Respiration, Artificial/methods , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/metabolism , Sex Factors
5.
Crit Care ; 25(1): 336, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34526076

ABSTRACT

BACKGROUND: Acute hypoxemic respiratory failure (HRF) is associated with high morbidity and mortality, but its heterogeneity challenges the identification of effective therapies. Defining subphenotypes with distinct prognoses or biologic features can improve therapeutic trials, but prior work has focused on ARDS, which excludes many acute HRF patients. We aimed to characterize persistent and resolving subphenotypes in the broader HRF population. METHODS: In this secondary analysis of 2 independent prospective ICU cohorts, we included adults with acute HRF, defined by invasive mechanical ventilation and PaO2-to-FIO2 ratio ≤ 300 on cohort enrollment (n = 768 in the discovery cohort and n = 1715 in the validation cohort). We classified patients as persistent HRF if still requiring mechanical ventilation with PaO2-to-FIO2 ratio ≤ 300 on day 3 following ICU admission, or resolving HRF if otherwise. We estimated relative risk of 28-day hospital mortality associated with persistent HRF, compared to resolving HRF, using generalized linear models. We also estimated fold difference in circulating biomarkers of inflammation and endothelial activation on cohort enrollment among persistent HRF compared to resolving HRF. Finally, we stratified our analyses by ARDS to understand whether this was driving differences between persistent and resolving HRF. RESULTS: Over 50% developed persistent HRF in both the discovery (n = 386) and validation (n = 1032) cohorts. Persistent HRF was associated with higher risk of death relative to resolving HRF in both the discovery (1.68-fold, 95% CI 1.11, 2.54) and validation cohorts (1.93-fold, 95% CI 1.50, 2.47), after adjustment for age, sex, chronic respiratory illness, and acute illness severity on enrollment (APACHE-III in discovery, APACHE-II in validation). Patients with persistent HRF displayed higher biomarkers of inflammation (interleukin-6, interleukin-8) and endothelial dysfunction (angiopoietin-2) than resolving HRF after adjustment. Only half of persistent HRF patients had ARDS, yet exhibited higher mortality and biomarkers than resolving HRF regardless of whether they qualified for ARDS. CONCLUSION: Patients with persistent HRF are common and have higher mortality and elevated circulating markers of lung injury compared to resolving HRF, and yet only a subset are captured by ARDS definitions. Persistent HRF may represent a clinically important, inclusive target for future therapeutic trials in HRF.


Subject(s)
Mortality/trends , Phenotype , Respiratory Insufficiency/classification , APACHE , Biomarkers/analysis , Cohort Studies , Female , Humans , Intensive Care Units/organization & administration , Intensive Care Units/statistics & numerical data , Male , Middle Aged , Prognosis , Prospective Studies , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/mortality
6.
Crit Care Explor ; 3(9): e0527, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34549190

ABSTRACT

We hypothesized that low serum albumin would contribute to pulmonary edema formation, thereby independently increasing the risk of developing acute respiratory distress syndrome in critically ill patients. DESIGN: Retrospective analysis of prospective cohort. SETTING: Medical, surgical, and cardiovascular ICUs at Vanderbilt University Medical Center. PATIENTS: Patients (n = 993) with serum albumin measured for clinical reasons within 24 hours of study enrollment on ICU day 2 were included. MEASUREMENTS AND MAIN RESULTS: The primary outcome was presence of acute respiratory distress syndrome at any time during the first 4 days in the ICU, as defined by the Berlin definition. Secondary outcomes included ventilator-free days and ICU length of stay. In an unadjusted analysis, lower serum albumin levels were associated with a higher occurrence rate of acute respiratory distress syndrome (p < 0.001). In a multivariable analysis controlling for prespecified confounders, lower serum albumin was independently associated with an increased risk of acute respiratory distress syndrome (odds ratio, 1.48 per 1-g/dL decrease in albumin; 95% CI, 1.14-1.94; p = 0.004). Additionally, lower serum albumin was associated with increased mortality (odds ratio, 1.56 per 1-g/dL decrease in albumin; 95% CI, 1.19-2.04; p = 0.001), increased ICU length of stay (incidence rate ratio, 1.19; 95% CI, 1.15-1.23; p < 0.001), higher Sequential Organ Failure Assessment score (p < 0.001), and fewer ventilator-free days (incidence rate ratio, 1.21; 95% CI, 1.19-1.24; p < 0.001). CONCLUSIONS: Among adult ICU patients, lower serum albumin was independently associated with increased risk of acute respiratory distress syndrome after controlling for severity of illness and potential confounders. These findings support the hypothesis that low plasma oncotic pressure contributes to pulmonary edema formation in patients at risk for acute respiratory distress syndrome, independent of severity of illness.

7.
Am J Physiol Lung Cell Mol Physiol ; 320(5): L785-L790, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33655765

ABSTRACT

Noninvasive sampling of the distal airspace in patients with acute respiratory distress syndrome (ARDS) has long eluded clinical and translational researchers. We recently reported that fluid collected from heat moisture exchange (HME) filters closely mirrors fluid directly aspirated from the distal airspace. In the current study, we sought to determine fluid yield from different HME types, optimal HME circuit dwell time, and reliability of HME fluid in reflecting the distal airspace. We studied fluid yield from four different filter types by loading increasing volumes of saline and measuring volumes of fluid recovered. We collected filters after 1, 2, and 4 h of dwell time for measurement of fluid volume and total protein from 13 subjects. After identifying 4 h as the optimal dwell time, we measured total protein and IgM in HME fluid from 42 subjects with ARDS and nine with hydrostatic pulmonary edema (HYDRO). We found that the fluid yield varies greatly by filter type. With timed sample collection, fluid recovery increased with increasing circuit dwell time with a median volume of 2.0 mL [interquartile range (IQR) 1.2-2.7] after 4 h. Total protein was higher in the 42 subjects with ARDS compared with nine with HYDRO [median 708 µg/mL (IQR 244-2017) vs. 364 µg/mL (IQR 136-578), P = 0.047], confirming that total protein concentration in HME is higher in ARDS compared with hydrostatic edema. These studies establish a standardized HME fluid collection protocol and confirm that HME fluid analysis is a novel noninvasive tool for the study of the distal airspace in ARDS.


Subject(s)
Diagnostic Techniques, Respiratory System/standards , Hot Temperature , Humidity , Pulmonary Edema/diagnosis , Respiration, Artificial/methods , Respiratory Distress Syndrome/diagnosis , Adult , Aged , Aged, 80 and over , Breath Tests , Female , Humans , Male , Middle Aged , Pulmonary Edema/physiopathology , Respiratory Distress Syndrome/physiopathology
8.
Crit Care ; 25(1): 48, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33541396

ABSTRACT

BACKGROUND: Endothelial dysfunction and injury is a major pathophysiologic feature of sepsis. Sepsis is also the most frequent cause of acute kidney injury (AKI) in critically ill patients. Though most studies of AKI in sepsis have focused on tubular epithelial injury, the role of endothelial dysfunction and injury is less well studied. The goal of this study was first to investigate whether endothelial dysfunction and injury biomarkers were associated with severe AKI in sepsis patients. The second goal was to determine the best performing biomarker for severe AKI and whether this biomarker was associated with severe AKI across different etiologies of sepsis and clinical outcomes. METHODS: We studied adults with severe sepsis and acute respiratory failure (ARF) enrolled in the prospective observational Validating Acute Lung Injury markers for Diagnosis (VALID) study. Plasma endothelial dysfunction and injury biomarkers, including angiopoietin-2, soluble vascular endothelial cadherin (sVE-cadherin), endocan and syndecan-1, were measured at study enrollment. Primary analysis focused on the association between endothelial biomarker levels with severe AKI (defined as Kidney Disease: Improving Global Outcomes [KDIGO] AKI stage 2 or 3), other organ dysfunctions (defined by Brussels organ failure scores), and comparison of pulmonary versus non-pulmonary sepsis. RESULTS: Among 228 sepsis patients enrolled, 141 developed severe AKI. Plasma levels of angiopoietin-2, endocan, sVE-cadherin, and syndecan-1 were significantly higher in sepsis patients with severe AKI compared to those without severe AKI. Among four endothelial biomarkers, only angiopoietin-2 was independently associated with severe AKI (odds ratio 6.07 per log increase, 95% CI 2.34-15.78, p < 0.001). Plasma angiopoietin-2 levels by quartile were significantly higher in sepsis patients with hepatic, coagulation, and circulatory failure. Plasma angiopoietin-2 levels were also significantly higher in patients with non-pulmonary sepsis compared to subjects with pulmonary sepsis. CONCLUSION: Among four biomarkers of endothelial dysfunction and injury, angiopoietin-2 had the most robust independent association with development of severe AKI in patients with severe sepsis and ARF. Plasma angiopoietin-2 levels were also associated with other organ dysfunctions, non-pulmonary sepsis, and death. These findings highlight the importance of early endothelial dysfunction and injury in the pathogenesis of sepsis-induced AKI.


Subject(s)
Acute Kidney Injury/etiology , Angiopoietin-2/analysis , Sepsis/complications , Acute Kidney Injury/blood , Adult , Aged , Angiopoietin-2/blood , Biomarkers/analysis , Biomarkers/blood , Cadherins/analysis , Cadherins/blood , Chi-Square Distribution , Endothelium/physiopathology , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Male , Middle Aged , Neoplasm Proteins/analysis , Neoplasm Proteins/blood , Odds Ratio , Organ Dysfunction Scores , Prospective Studies , Proteoglycans/analysis , Proteoglycans/blood , Respiratory Insufficiency/blood , Respiratory Insufficiency/complications , Sepsis/blood , Statistics, Nonparametric , Syndecan-1/analysis , Syndecan-1/blood
9.
Am J Respir Crit Care Med ; 203(6): 699-706, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33030981

ABSTRACT

Rationale: The biological mechanisms of long-term cognitive impairment and disability after critical illness are unclear.Objectives: To test the hypothesis that markers of acute inflammation and coagulation are associated with subsequent long-term cognitive impairment and disability.Methods: We obtained plasma samples from adults with respiratory failure or shock on Study Days 1, 3, and 5 and measured concentrations of CRP (C-reactive protein), IFN-γ, IL-1ß, IL-6, IL-8, IL-10, IL-12, MMP-9 (matrix metalloproteinase-9), TNF-α (tumor necrosis factor-α), soluble TNF receptor 1, and protein C. At 3 and 12 months after discharge, we assessed global cognition, executive function, and activities of daily living. We analyzed associations between markers and outcomes using multivariable regression, adjusting for age, sex, education, comorbidities, baseline cognition, doses of sedatives and opioids, stroke risk (in cognitive models), and baseline disability scores (in disability models).Measurements and Main Results: We included 548 participants who were a median (interquartile range) of 62 (53-72) years old, 88% of whom were mechanically ventilated, and who had an enrollment Sequential Organ Failure Assessment score of 9 (7-11). After adjusting for covariates, no markers were associated with long-term cognitive function. Two markers, CRP and MMP-9, were associated with greater disability in basic and instrumental activities of daily living at 3 and 12 months. No other markers were consistently associated with disability outcomes.Conclusions: Markers of systemic inflammation and coagulation measured early during critical illness are not associated with long-term cognitive outcomes and demonstrate inconsistent associations with disability outcomes. Future studies that pair longitudinal measurement of inflammation and related pathways throughout the course of critical illness and during recovery with long-term outcomes are needed.


Subject(s)
Biomarkers/blood , Blood Coagulation Disorders/blood , C-Reactive Protein/analysis , Cognitive Dysfunction/blood , Inflammation/blood , Interferon Regulatory Factors/blood , Matrix Metalloproteinases/blood , Tumor Necrosis Factors/blood , Aged , Critical Illness , Disabled Persons , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Prospective Studies
10.
PLoS One ; 15(2): e0228727, 2020.
Article in English | MEDLINE | ID: mdl-32012200

ABSTRACT

Increased endothelial permeability is central to the pathogenesis of sepsis and leads to organ dysfunction and death but the endogenous mechanisms that drive increased endothelial permeability are not completely understood. We previously reported that cell-free hemoglobin (CFH), elevated in 80% of patients with sepsis, increases lung microvascular permeability in an ex vivo human lung model and cultured endothelial cells. In this study, we augmented a murine model of polymicrobial sepsis with elevated circulating CFH to test the hypothesis that CFH increases microvascular endothelial permeability by inducing endothelial apoptosis. Mice were treated with an intraperitoneal injection of cecal slurry with or without a single intravenous injection of CFH. Severity of illness, mortality, systemic and lung inflammation, endothelial injury and dysfunction and lung apoptosis were measured at selected time points. We found that CFH added to CS increased sepsis mortality, plasma inflammatory cytokines as well as lung apoptosis, edema and inflammation without affecting large vessel reactivity or vascular injury marker concentrations. These results suggest that CFH is an endogenous mediator of increased endothelial permeability and apoptosis in sepsis and may be a promising therapeutic target.


Subject(s)
Apoptosis , Capillary Permeability , Hemoglobins/metabolism , Lung/blood supply , Lung/pathology , Sepsis/metabolism , Sepsis/pathology , Animals , Endothelial Cells/metabolism , Endothelial Cells/pathology , Female , Humans , Inflammation/pathology , Mice , Mice, Inbred C57BL , Oxidative Stress , Sepsis/microbiology
11.
J Crit Care ; 56: 94-99, 2020 04.
Article in English | MEDLINE | ID: mdl-31896448

ABSTRACT

PURPOSE: Delirium is prevalent but with unclear pathogenesis. Neuronal injury repair pathways may be protective. We hypothesized that higher concentrations of neuronal repair biomarkers would be associated with decreased delirium in critically ill patients. MATERIALS AND METHODS: We performed a nested study of hospital survivors within a prospective cohort that enrolled patients within 72 h of respiratory failure or shock. We measured plasma concentrations of ubiquitin carboxyl-terminal-esterase-L1 (UCHL1) and brain-derived neurotrophic factor (BDNF) from blood collected at enrollment. Delirium was assessed twice daily using the CAM-ICU. Multivariable regression was used to examine the associations between biomarkers and delirium prevalence/duration, adjusting for covariates and interactions with age and IL-6 plasma concentration. RESULTS: We included 427 patients with a median age of 59 years (IQR 48-69) and APACHE II score of 25 (IQR 19-30). Higher plasma concentration of UCHL1 on admission was independently associated with lower prevalence of delirium (p = .04) but not associated with duration of delirium (p = .06). BDNF plasma concentration was not associated with prevalence (p = .26) or duration of delirium (p = .36). CONCLUSIONS: During critical illness, higher UCHL1 plasma concentration is associated with lower prevalence of delirium; BDNF plasma concentration is not associated with delirium. Clinical trial number: NCT00392795; https://clinicaltrials.gov/ct2/show/NCT00392795.


Subject(s)
Biomarkers/blood , Critical Illness , Delirium/etiology , Inflammation/physiopathology , Aged , Brain-Derived Neurotrophic Factor/blood , Female , Humans , Male , Middle Aged , Multivariate Analysis , Patient Discharge , Prevalence , Prospective Studies , Respiratory Insufficiency/complications , Shock/complications , Survivors , Treatment Outcome , Ubiquitin Thiolesterase/blood
12.
Anesthesiology ; 132(3): 551-561, 2020 03.
Article in English | MEDLINE | ID: mdl-31770146

ABSTRACT

BACKGROUND: Mechanisms of postoperative delirium remain poorly understood, limiting development of effective treatments. We tested the hypothesis that intraoperative oxidative damage is associated with delirium and neuronal injury and that disruption of the blood-brain barrier modifies these associations. METHODS: In a prespecified cohort study of 400 cardiac surgery patients enrolled in a clinical trial of atorvastatin to reduce kidney injury and delirium, we measured plasma concentrations of F2-isoprostanes and isofurans using gas chromatography-mass spectrometry to quantify oxidative damage, ubiquitin carboxyl-terminal hydrolase isozyme L1 to quantify neuronal injury, and S100 calcium-binding protein B using enzyme-linked immunosorbent assays to quantify blood-brain barrier disruption before, during, and after surgery. We performed the Confusion Assessment Method for the Intensive Care Unit twice daily to diagnose delirium. We measured the independent associations between intraoperative F2-isoprostanes and isofurans and delirium (primary outcome) and postoperative ubiquitin carboxyl-terminal hydrolase isozyme L1 (secondary outcome), and we assessed if S100 calcium-binding protein B modified these associations. RESULTS: Delirium occurred in 109 of 400 (27.3%) patients for a median (10th, 90th percentile) of 1.0 (0.5, 3.0) days. In the total cohort, plasma ubiquitin carboxyl-terminal hydrolase isozyme L1 concentration was 6.3 ng/ml (2.7, 14.9) at baseline and 12.4 ng/ml (7.9, 31.2) on postoperative day 1. F2-isoprostanes and isofurans increased throughout surgery, and the log-transformed sum of intraoperative F2-isoprostanes and isofurans was independently associated with increased odds of postoperative delirium (odds ratio, 3.70 [95% CI, 1.41 to 9.70]; P = 0.008) and with increased postoperative ubiquitin carboxyl-terminal hydrolase isozyme L1 (ratio of geometric means, 1.42 [1.11 to 1.81]; P = 0.005). The association between increased intraoperative F2-isoprostanes and isofurans and increased postoperative ubiquitin carboxyl-terminal hydrolase isozyme L1 was amplified in patients with elevated S100 calcium-binding protein B (P = 0.049). CONCLUSIONS: Intraoperative oxidative damage was associated with increased postoperative delirium and neuronal injury, and the association between oxidative damage and neuronal injury was stronger among patients with increased blood-brain barrier disruption.


Subject(s)
Cardiac Surgical Procedures/adverse effects , Emergence Delirium/pathology , Emergence Delirium/psychology , Oxidative Stress , Postoperative Complications/pathology , Postoperative Complications/psychology , Aged , Aged, 80 and over , Blood-Brain Barrier , Cohort Studies , F2-Isoprostanes/blood , Female , Furans/blood , Humans , Male , Middle Aged , Prospective Studies , S100 Proteins/blood , Ubiquitin Thiolesterase/blood
13.
PLoS One ; 14(12): e0226412, 2019.
Article in English | MEDLINE | ID: mdl-31856187

ABSTRACT

BACKGROUND: Delirium's pathophysiology is poorly understood. We sought to determine if plasma biomarkers of inflammation, coagulation, endothelial activation, and blood brain barrier (BBB) injury were associated with emergency department (ED) delirium duration. METHODS: We enrolled hospitalized patients who were 65 years or older from the ED. Plasma biomarkers of inflammation (interleukin-6 [IL-6], IL-8, soluble tumor necrosis factor receptor I [sTNFRI]), coagulation (Protein C), endothelial activation (plasminogen activating inhibitor-1 [PAI-1]), and BBB injury (S100B) at were measured using blood obtained at enrollment. The dependent variable was ED delirium duration which was determined by the Brief Confusion Assessment Method assessed in the ED and hospitalization. Proportional odds logistic regression analyses were performed adjusted for relevant confounders and allowing for interaction by baseline dementia status. RESULTS: A total of 156 patients were enrolled. IL-6 (POR = 1.59, 95%CI: 1.09-2.32) and PAI-1 (POR = 2.96, 95%CI: 1.48 to 6.85) were independently associated with more prominent ED delirium duration in subjects without dementia only. No significant associations between IL-8, Protein C, sTNRFI, and S100B and ED delirium duration were observed. CONCLUSIONS: Plasma Biomarkers of systemic inflammation and endothelial activation are associated with ED delirium duration in older ED patients without dementia.


Subject(s)
Blood Coagulation , Brain Injuries/complications , Delirium/blood , Delirium/diagnosis , Hospitalization , Aged , Aged, 80 and over , Biomarkers/blood , Blood-Brain Barrier/injuries , Cohort Studies , Delirium/complications , Delirium/physiopathology , Female , Humans , Inflammation/complications , Male , Prognosis , Time Factors
14.
JCI Insight ; 4(21)2019 11 01.
Article in English | MEDLINE | ID: mdl-31573976

ABSTRACT

Acute respiratory distress syndrome (ARDS) is an inflammatory lung disorder that frequently complicates critical illness and commonly occurs in sepsis. Although numerous clinical and environmental risk factors exist, not all patients with risk factors develop ARDS, raising the possibility of genetic underpinnings for ARDS susceptibility. We have previously reported that circulating cell-free hemoglobin (CFH) is elevated during sepsis, and higher levels predict worse outcomes. Excess CFH is rapidly scavenged by haptoglobin (Hp). A common HP genetic variant, HP2, is unique to humans and is common in many populations worldwide. HP2 haptoglobin has reduced ability to inhibit CFH-mediated inflammation and oxidative stress compared with the alternative HP1. We hypothesized that HP2 increases ARDS susceptibility during sepsis when plasma CFH levels are elevated. In a murine model of sepsis with elevated CFH, transgenic mice homozygous for Hp2 had increased lung inflammation, pulmonary vascular permeability, lung apoptosis, and mortality compared with wild-type mice. We then tested the clinical relevance of our findings in 496 septic critically ill adults, finding that HP2 increased ARDS susceptibility after controlling for clinical risk factors and plasma CFH. These observations identify HP2 as a potentially novel genetic ARDS risk factor during sepsis and may have important implications in the study and treatment of ARDS.


Subject(s)
Haptoglobins/genetics , Respiratory Distress Syndrome/genetics , Sepsis/complications , Adult , Animals , Apoptosis , Capillary Permeability , Genetic Predisposition to Disease , Humans , Lung/blood supply , Lung/pathology , Mice , Mice, Transgenic , Prospective Studies , Respiratory Distress Syndrome/complications , Respiratory Distress Syndrome/pathology , Survival Analysis
15.
Crit Care ; 23(1): 18, 2019 Jan 18.
Article in English | MEDLINE | ID: mdl-30658667

ABSTRACT

BACKGROUND: Vascular endothelial cadherin (VE-cadherin) is a membrane protein that is the major component of adherens junctions between endothelial cells. It is crucial for regulating vascular integrity, endothelial permeability, and angiogenesis. During inflammatory processes, VE-cadherin is shed into circulation (sVE-cadherin). Plasma sVE-cadherin is elevated in sepsis, malignancy, autoimmune diseases, and coronary atherosclerosis. However, the relationship between specific organ failures, especially severe acute kidney injury (AKI) defined by requirement for renal replacement therapy (AKI-RRT), and plasma sVE-cadherin levels in severe sepsis has not been well studied. METHODS: The present study is a prospective study of critically ill adults with sepsis and acute respiratory failure (age ≥ 18 years) enrolled in the Validating Acute Lung Injury markers for Diagnosis (VALID) study. Plasma sVE-cadherin was measured at study enrollment. Primary analysis focused on the association between sVE-cadherin levels and the development of AKI, AKI-RRT, other organ dysfunction as defined by Brussels organ failure scores, pulmonary versus non-pulmonary sepsis, acute respiratory distress syndrome (ARDS), and in-hospital mortality. RESULTS: Of 228 severe sepsis patients included, 80 (35%) developed AKI-RRT. Plasma sVE-cadherin levels at enrollment were significantly higher in patients with AKI-RRT compared with patients without AKI-RRT (p = 0.003). Plasma sVE-cadherin levels by quartile were significantly higher in severe sepsis patients with acute kidney injury stage 3 (p = 0.044) as defined by Kidney Disease Improving Global Outcomes (KDIGO) criteria. Patients with greater than 2 organ failures had higher plasma sVE-cadherin levels than patients with 2 or fewer organ failures (p < 0.001). In a multivariable analysis, plasma sVE-cadherin was independently associated with AKI-RRT (odds ratio 6.44 per log increase in plasma sVE-cadherin, 95% CI 1.126-36.847, p = 0.036). Plasma sVE-cadherin levels were significantly higher in patients with non-pulmonary sepsis compared to pulmonary sepsis (p < 0.001). CONCLUSION: Shedding of sVE-cadherin is associated with severe acute kidney injury and with more severe organ dysfunction in patients with sepsis, suggesting that breakdown of endothelial adherens junctions may contribute to the pathogenesis of organ dysfunction in sepsis. Further studies of sVE-cadherin as a biomarker of disease severity in clinical sepsis are needed to better elucidate the role of VE-cadherin shedding in sepsis-induced severe organ dysfunction.


Subject(s)
Acute Kidney Injury/etiology , Antigens, CD/analysis , Antigens, CD/metabolism , Cadherins/analysis , Cadherins/metabolism , Sepsis/complications , APACHE , Acute Kidney Injury/metabolism , Acute Kidney Injury/physiopathology , Adult , Aged , Antigens, CD/blood , Biomarkers/analysis , Biomarkers/blood , Cadherins/blood , Cohort Studies , Female , Humans , Male , Middle Aged , Organ Dysfunction Scores , Prospective Studies , Sepsis/blood , Sepsis/physiopathology , Statistics, Nonparametric
16.
Am J Respir Cell Mol Biol ; 59(3): 363-374, 2018 09.
Article in English | MEDLINE | ID: mdl-29584451

ABSTRACT

The lung epithelial glycocalyx is a carbohydrate-enriched layer lining the pulmonary epithelial surface. Although epithelial glycocalyx visualization has been reported, its composition and function remain unknown. Using immunofluorescence and mass spectrometry, we identified heparan sulfate (HS) and chondroitin sulfate within the lung epithelial glycocalyx. In vivo selective enzymatic degradation of epithelial HS, but not chondroitin sulfate, increased lung permeability. Using mass spectrometry and gel electrophoresis approaches to determine the fate of epithelial HS during lung injury, we detected shedding of 20 saccharide-long or greater HS into BAL fluid in intratracheal LPS-treated mice. Furthermore, airspace HS in clinical samples from patients with acute respiratory distress syndrome correlated with indices of alveolar permeability, reflecting the clinical relevance of these findings. The length of HS shed during intratracheal LPS-induced injury (≥20 saccharides) suggests cleavage of the proteoglycan anchoring HS to the epithelial surface, rather than cleavage of HS itself. We used pharmacologic and transgenic animal approaches to determine that matrix metalloproteinases partially mediate HS shedding during intratracheal LPS-induced lung injury. Although there was a trend toward decreased alveolar permeability after treatment with the matrix metalloproteinase inhibitor, doxycycline, this did not reach statistical significance. These studies suggest that epithelial HS contributes to the lung epithelial barrier and its degradation is sufficient to increase lung permeability. The partial reduction of HS shedding achieved with doxycycline is not sufficient to rescue epithelial barrier function during intratracheal LPS-induced lung injury; however, whether complete attenuation of HS shedding is sufficient to rescue epithelial barrier function remains unknown.


Subject(s)
Endothelium, Vascular/drug effects , Glycocalyx/metabolism , Heparitin Sulfate/metabolism , Lung Injury/drug therapy , Animals , Capillary Permeability/drug effects , Endothelium, Vascular/metabolism , Lipopolysaccharides/pharmacology , Lung Injury/chemically induced , Mice , Respiratory Distress Syndrome/drug therapy , Syndecans/metabolism
17.
Intensive Care Med ; 44(3): 345-355, 2018 03.
Article in English | MEDLINE | ID: mdl-29523900

ABSTRACT

PURPOSE: Neurologic and endothelial injury biomarkers are associated with prolonged delirium during critical illness and may reflect injury pathways that lead to poor long-term outcomes. We hypothesized that blood-brain barrier (BBB), neuronal, and endothelial injury biomarkers measured during critical illness are associated with cognitive impairment and disability after discharge. METHODS: We enrolled adults with respiratory failure and/or shock and measured plasma concentrations of BBB (S100B), neuronal (UCHL1, BDNF), and endothelial (E-selectin, PAI-1) injury markers within 72 h of ICU admission. At 3 and 12 months post-discharge, we assessed participants' global cognition, executive function, and activities of daily living (ADL). We used multivariable regression to determine whether biomarkers were associated with outcomes after adjusting for relevant demographic and acute illness covariates. RESULTS: Our study included 419 survivors of critical illness with median age 59 years and APACHE II score 25. Higher S100B was associated with worse global cognition at 3 and 12 months (P = 0.008; P = 0.01). UCHL1 was nonlinearly associated with global cognition at 3 months (P = 0.02). Higher E-selectin was associated with worse global cognition (P = 0.006 at 3 months; P = 0.06 at 12 months). BDNF and PAI-1 were not associated with global cognition. No biomarkers were associated with executive function. Higher S100B (P = 0.05) and E-selectin (P = 0.02) were associated with increased disability in ADLs at 3 months. CONCLUSIONS: S100B, a marker of BBB and/or astrocyte injury, and E-selectin, an adhesion molecule and marker of endothelial injury, are associated with long-term cognitive impairment after critical illness, findings that may reflect mechanisms of critical illness brain injury.


Subject(s)
Cognition Disorders , Cognitive Dysfunction , Critical Illness , Endothelium , Activities of Daily Living , Adult , Aged , Biomarkers , Delirium , E-Selectin/analysis , Endothelium/injuries , Humans , Male , Middle Aged , Prospective Studies , S100 Calcium Binding Protein beta Subunit/analysis
18.
JCI Insight ; 3(2)2018 01 25.
Article in English | MEDLINE | ID: mdl-29367464

ABSTRACT

Primary graft dysfunction (PGD) is acute lung injury within 72 hours of lung transplantation. We hypothesized that cell-free hemoglobin (CFH) contributes to PGD by increasing lung microvascular permeability and tested this in patients, ex vivo human lungs, and cultured human lung microvascular endothelial cells. In a nested case control study of 40 patients with severe PGD at 72 hours and 80 matched controls without PGD, elevated preoperative CFH was independently associated with increased PGD risk (odds ratio [OR] 2.75, 95%CI, 1.23-6.16, P = 0.014). The effect of CFH on PGD was magnified by reperfusion fraction of inspired oxygen (FiO2) ≥ 0.40 (OR 3.41, P = 0.031). Isolated perfused human lungs exposed to intravascular CFH (100 mg/dl) developed increased vascular permeability as measured by lung weight (CFH 14.4% vs. control 0.65%, P = 0.047) and extravasation of Evans blue-labeled albumin dye (EBD) into the airspace (P = 0.027). CFH (1 mg/dl) also increased paracellular permeability of human pulmonary microvascular endothelial cell monolayers (hPMVECs). Hyperoxia (FiO2 = 0.95) increased human lung and hPMVEC permeability compared with normoxia (FiO2 = 0.21). Treatment with acetaminophen (15 µg/ml), a specific hemoprotein reductant, prevented CFH-dependent permeability in human lungs (P = 0.046) and hPMVECs (P = 0.037). In summary, CFH may mediate PGD through oxidative effects on microvascular permeability, which are augmented by hyperoxia and abrogated by acetaminophen.


Subject(s)
Hemoglobins/immunology , Hyperoxia/immunology , Lung Transplantation/adverse effects , Primary Graft Dysfunction/immunology , Acetaminophen/pharmacology , Allografts/blood supply , Allografts/immunology , Allografts/pathology , Capillary Permeability/drug effects , Capillary Permeability/immunology , Case-Control Studies , Cell Line , Endothelial Cells/metabolism , Endothelial Cells/pathology , Female , Hemoglobins/antagonists & inhibitors , Humans , Hyperoxia/blood , Hyperoxia/pathology , Lung/blood supply , Lung/cytology , Lung/immunology , Lung/pathology , Male , Microvessels/cytology , Microvessels/metabolism , Middle Aged , Oxidative Stress/immunology , Primary Graft Dysfunction/blood , Primary Graft Dysfunction/pathology
19.
Am J Respir Crit Care Med ; 197(8): 1027-1035, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29253353

ABSTRACT

RATIONALE: A major barrier to a more complete understanding of acute respiratory distress syndrome (ARDS) pathophysiology is the inability to sample the distal airspace of patients with ARDS. The heat moisture exchanger (HME) filter is an inline bacteriostatic sponge that collects exhaled moisture from the lungs of mechanically ventilated patients. OBJECTIVES: To test the hypothesis that HME filter fluid (HMEF) represents the distal airspace fluid in patients with ARDS. METHODS: Samples of HMEF were collected from 37 patients with acute pulmonary edema (either from ARDS or hydrostatic causes [HYDRO; control subjects]). Concurrent undiluted pulmonary edema fluid (EF) and HMEF were collected from six patients. HMEF from 11 patients (8 ARDS and 3 HYDRO) were analyzed by liquid chromatography-coupled tandem mass spectometry. Total protein (bicinchoninic acid assay), MMP-9 (matrix metalloproteinase-9), and MPO (myeloperoxidase) (ELISA) were measured in 29 subjects with ARDS and 5 subjects with HYDRO. SP-D (surfactant protein-D), RAGE (receptor for advanced glycation end-products) (ELISA), and cytokines (IL-1ß, IL-6, IL-8, and tumor necrosis factor-α) (electrochemiluminescent assays) were measured in six concurrent HMEF and EF samples. MEASUREMENTS AND MAIN RESULTS: Liquid chromatography-coupled tandem mass spectrometry on concurrent EF and HMEF samples from four patients revealed similar base peak intensities and m/z values indicating similar protein composition. There were 21 significantly elevated proteins in HMEF from patients with ARDS versus HYDRO. Eight proteins measured in concurrent EF and HMEF from six patients were highly correlated. In HMEF, total protein and MMP-9 were significantly higher in ARDS than in HYDRO. CONCLUSIONS: These data suggest that HMEF is a novel, noninvasive method to accurately sample the distal airspace in patients with ARDS.


Subject(s)
Diagnostic Techniques, Respiratory System , Gelatin Sponge, Absorbable , Minimally Invasive Surgical Procedures/instrumentation , Minimally Invasive Surgical Procedures/methods , Pulmonary Alveoli/physiopathology , Respiration, Artificial/methods , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/physiopathology , Aged , Female , Humans , Male , Middle Aged
20.
Ann Intensive Care ; 7(1): 102, 2017 Oct 06.
Article in English | MEDLINE | ID: mdl-28986821

ABSTRACT

BACKGROUND: Disruption of the endothelial glycocalyx contributes to acute lung injury in experimental sepsis but has not been well studied in humans. To study glycocalyx degradation in sepsis-induced ARDS, we measured plasma levels of syndecan-1, a marker for glycocalyx degradation. METHODS: The present study is a retrospective observational study of 262 ventilated medical ICU patients at risk of ARDS due to severe sepsis and APACHE II ≥ 25. Plasma syndecan-1 was measured at study enrollment. Primary analysis focused on the association between syndecan-1 levels and the development of ARDS, other organ dysfunction (Brussels criteria), or in-hospital mortality. RESULTS: Overall, 135 (52%) patients developed ARDS. In patients with non-pulmonary sepsis, syndecan-1 levels were associated with ARDS (p = 0.05). Regardless of etiology of sepsis, higher syndecan-1 levels were associated with hepatic (p < 0.001), renal (p = 0.003), coagulation (p = 0.001), and circulatory (p = 0.02) failure as well as in-hospital mortality (p = 0.001), and there was a significant association between syndecan-1 levels and the number of vasopressors required in the first 24 h (p < 0.001). In addition, elevated syndecan levels were independently predictive of mortality in multivariable logistic regression adjusted for age and APACHE II score (odds ratio 1.85 per log increase in syndecan-1, 95% CI 1.056-3.241, p = 0.03). CONCLUSION: The extent of endothelial glycocalyx degradation is associated with non-pulmonary organ dysfunction in subjects with sepsis and is associated with ARDS but only in the subgroup with non-pulmonary sepsis. Measurement of syndecan-1 levels in sepsis patients might be useful for identifying patients at high risk of organ dysfunction and mortality as well as those who could benefit from therapies targeted at protecting or restoring the glycocalyx.

SELECTION OF CITATIONS
SEARCH DETAIL
...