Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Artif Cells Nanomed Biotechnol ; 46(sup2): 766-775, 2018.
Article in English | MEDLINE | ID: mdl-29961338

ABSTRACT

Second generation E. coli DH5α (pKAU17) was successfully encapsulated by means of atomization (MA), inkjet printing (MI) and double-encapsulation (DDMI) for the purpose of urea degradation in a simulated uremic medium at 37 °C. Experimentally determined values of the effectiveness factor are 0.83, 0.28 and 0.34 for the MI, MA and DDMI capsules, respectively, suggesting that the catalytic activity of the E. coli DH5α (pKAU17) immobilized in MI capsule (d = 52 µm ± 2.7 µm) is significantly less diffusion-limited than in the case of the MA (d = 1558 µm ± 125 µm) and DDMI (d = 1370 µm ± 60 µm) bio-encapsulation schemes at the 98.3% CI. The proposed novel double encapsulation biofabrication method for alginate-based microspheres, characterized by lower membrane degradation rates due to secondary containment is recommended compared to the standard atomization scheme currently adopted across immobilization-based therapeutic scenarios. A Fickian-based mechanism is proposed with simulations mimicking urea degradation for a single capsule for the atomization and the inkjet schemes.


Subject(s)
Artificial Cells/microbiology , Escherichia coli/metabolism , Miniaturization , Urea/metabolism , Diffusion , Kinetics
2.
BMC Biotechnol ; 18(1): 37, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29859085

ABSTRACT

BACKGROUND: Custom synthesized DNA is in high demand for synthetic biology applications. However, current technologies to produce these sequences using assembly from DNA oligonucleotides are costly and labor-intensive. The automation and reduced sample volumes afforded by microfluidic technologies could significantly decrease materials and labor costs associated with DNA synthesis. The purpose of this study was to develop a gene assembly protocol utilizing a digital microfluidic device. Toward this goal, we adapted bench-scale oligonucleotide assembly methods followed by enzymatic error correction to the Mondrian™ digital microfluidic platform. RESULTS: We optimized Gibson assembly, polymerase chain reaction (PCR), and enzymatic error correction reactions in a single protocol to assemble 12 oligonucleotides into a 339-bp double- stranded DNA sequence encoding part of the human influenza virus hemagglutinin (HA) gene. The reactions were scaled down to 0.6-1.2 µL. Initial microfluidic assembly methods were successful and had an error frequency of approximately 4 errors/kb with errors originating from the original oligonucleotide synthesis. Relative to conventional benchtop procedures, PCR optimization required additional amounts of MgCl2, Phusion polymerase, and PEG 8000 to achieve amplification of the assembly and error correction products. After one round of error correction, error frequency was reduced to an average of 1.8 errors kb- 1. CONCLUSION: We demonstrated that DNA assembly from oligonucleotides and error correction could be completely automated on a digital microfluidic (DMF) platform. The results demonstrate that enzymatic reactions in droplets show a strong dependence on surface interactions, and successful on-chip implementation required supplementation with surfactants, molecular crowding agents, and an excess of enzyme. Enzymatic error correction of assembled fragments improved sequence fidelity by 2-fold, which was a significant improvement but somewhat lower than expected compared to bench-top assays, suggesting an additional capacity for optimization.


Subject(s)
DNA, Viral/chemical synthesis , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Microfluidic Analytical Techniques/methods , Oligonucleotide Array Sequence Analysis/methods , Humans , Influenza A Virus, H9N2 Subtype/genetics , Influenza, Human/microbiology , Microfluidics/instrumentation , Polymerase Chain Reaction/methods
3.
Front Neurosci ; 8: 243, 2014.
Article in English | MEDLINE | ID: mdl-25191217

ABSTRACT

The Simon effect refers to the performance (response time and accuracy) advantage for responses that spatially correspond to the task-irrelevant location of a stimulus. It has been attributed to a natural tendency to respond toward the source of stimulation. When location is task-relevant, however, and responses are intentionally directed away (incompatible) or toward (compatible) the source of the stimulation, there is also an advantage for spatially compatible responses over spatially incompatible responses. Interestingly, a number of studies have demonstrated a reversed, or reduced, Simon effect following practice with a spatial incompatibility task. One interpretation of this finding is that practicing a spatial incompatibility task disables the natural tendency to respond toward stimuli. Here, the temporal dynamics of this stimulus-response (S-R) transfer were explored with speed-accuracy trade-offs (SATs). All experiments used the mixed-task paradigm in which Simon and spatial compatibility/incompatibility tasks were interleaved across blocks of trials. In general, bidirectional S-R transfer was observed: while the spatial incompatibility task had an influence on the Simon effect, the task-relevant S-R mapping of the Simon task also had a small impact on congruency effects within the spatial compatibility and incompatibility tasks. These effects were generally greater when the task contexts were similar. Moreover, the SAT analysis of performance in the Simon task demonstrated that the tendency to respond to the location of the stimulus was not eliminated because of the spatial incompatibility task. Rather, S-R transfer from the spatial incompatibility task appeared to partially mask the natural tendency to respond to the source of stimulation with a conflicting inclination to respond away from it. These findings support the use of SAT methodology to quantitatively describe rapid response tendencies.

4.
Materials (Basel) ; 7(12): 7670-7688, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-28788268

ABSTRACT

Hollow alginate microfibers (od = 1.3 mm, id = 0.9 mm, th = 400 µm, L = 3.5 cm) comprised of 2% (w/v) medium molecular weight alginate cross-linked with 0.9 M CaCl2 were fabricated to model outward diffusion capture by 2D fluorescent microscopy. A two-fold comparison of diffusivity determination based on real-time diffusion of Fluorescein isothiocyanate molecular weight (FITC MW) markers was conducted using a proposed Fickian-based approach in conjunction with a previously established numerical model developed based on spectrophotometric data. Computed empirical/numerical (Dempiricial/Dnumerical) diffusivities characterized by small standard deviations for the 4-, 70- and 500-kDa markers expressed in m²/s are (1.06 × 10-9 ± 1.96 × 10-10)/(2.03 × 10-11), (5.89 × 10-11 ± 2.83 × 10-12)/(4.6 × 10-12) and (4.89 × 10-12 ± 3.94 × 10-13)/(1.27 × 10-12), respectively, with the discrimination between the computation techniques narrowing down as a function of MW. The use of the numerical approach is recommended for fluorescence-based measurements as the standard computational method for effective diffusivity determination until capture rates (minimum 12 fps for the 4-kDa marker) and the use of linear instead of polynomial interpolating functions to model temporal intensity gradients have been proven to minimize the extent of systematic errors associated with the proposed empirical method.

5.
Chem Commun (Camb) ; 48(49): 6163-5, 2012 Jun 21.
Article in English | MEDLINE | ID: mdl-22590707

ABSTRACT

Organocatalytic ring opening polymerization (OROP) is used to effect the rapid, scalable, room temperature formation of size-controlled, highly uniform, polyvalent, nanogel star polymer nanoparticles of biodegradable composition.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/chemistry , Polyethylene Glycols/metabolism , Polyethyleneimine/metabolism , Polymers/metabolism , Catalysis , Models, Molecular , Molecular Structure , Nanogels , Polyethylene Glycols/chemistry , Polyethyleneimine/chemistry , Polymerization , Polymers/chemistry
7.
J Nanosci Nanotechnol ; 5(5): 831-5, 2005 May.
Article in English | MEDLINE | ID: mdl-16010948

ABSTRACT

Synthesis of silicon nanowires is studied by using a vapor-liquid-solid growth technique. Silicon tetrachloride reduction with hydrogen in the gas phase is used with gold serving as catalyst to facilitate growth. Only a narrow set of conditions of SiCl4 concentration and temperature yield straight nanowires. High concentrations and temperatures generally result in particulates, catalyst coverage and deactivation, and coatinglike materials.


Subject(s)
Crystallization/methods , Nanotubes/chemistry , Nanotubes/ultrastructure , Silicon/chemistry , Molecular Conformation , Nanotechnology/methods , Nanotubes/analysis , Particle Size , Phase Transition , Silicon/analysis , Solutions , Temperature , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...