Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Med ; 8(7)2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31261782

ABSTRACT

We analyzed maternal plasma cell-free DNA samples from twin pregnancies in a prospective blinded study to validate a single-nucleotide polymorphism (SNP)-based non-invasive prenatal test (NIPT) for zygosity, fetal sex, and aneuploidy. Zygosity was evaluated by looking for either one or two fetal genome complements, fetal sex was evaluated by evaluating Y-chromosome loci, and aneuploidy was assessed through SNP ratios. Zygosity was correctly predicted in 100% of cases (93/93; 95% confidence interval (CI) 96.1%-100%). Individual fetal sex for both twins was also called with 100% accuracy (102/102; 95% weighted CI 95.2%-100%). All cases with copy number truth were also correctly identified. The dizygotic aneuploidy sensitivity was 100% (10/10; 95% CI 69.2%-100%), and overall specificity was 100% (96/96; 95% weighted CI, 94.8%-100%). The mean fetal fraction (FF) of monozygotic twins (n = 43) was 13.0% (standard deviation (SD), 4.5%); for dizygotic twins (n = 79), the mean lower FF was 6.5% (SD, 3.1%) and the mean higher FF was 8.1% (SD, 3.5%). We conclude SNP-based NIPT for zygosity is of value when chorionicity is uncertain or anomalies are identified. Zygosity, fetal sex, and aneuploidy are complementary evaluations that can be carried out on the same specimen as early as 9 weeks' gestation.

2.
PLoS One ; 13(2): e0193476, 2018.
Article in English | MEDLINE | ID: mdl-29474437

ABSTRACT

INTRODUCTION: Non-invasive prenatal testing (NIPT) for aneuploidy using cell-free DNA in maternal plasma has been widely adopted. Recently, NIPT coverage has expanded to detect subchromosomal abnormalities including the 22q11.2 deletion. Validation of a SNP-based NIPT for detection of 22q11.2 deletions demonstrating a high sensitivity (97.8%) and specificity (99.75%) has been reported. We sought to further demonstrate the performance of a revised version of the test in a larger set of pregnancy plasma samples. METHODS: Blood samples from pregnant women (10 with 22q11.2-deletion‒affected fetuses and 390 negative controls) were successfully analyzed using a revised SNP-based NIPT for the 22q11.2 deletion. The sensitivity and specificity of the assay were measured. RESULTS: Sensitivity of the assay was 90% (9/10), and specificity of the assay was 99.74% (389/390), with a corresponding false positive-rate of 0.26%. DISCUSSION: The data presented in this study add to the growing body of evidence demonstrating the ability of the SNP-based NIPT to detect 22q11.2 deletions with high sensitivity and specificity.


Subject(s)
Chromosome Deletion , Genetic Testing/methods , Mothers , Plasma/metabolism , Polymorphism, Single Nucleotide , Prenatal Diagnosis/methods , Adult , Chromosomes, Human, Pair 22 , Female , Humans , Pregnancy
3.
Tissue Eng Part A ; 17(7-8): 1123-35, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21128865

ABSTRACT

Bone morphogenetic proteins (BMPs) are widely used as bone graft substitutes in spinal fusion, but are associated with numerous adverse effects. The growth factor Nel-like molecule-1 (Nell-1) is mechanistically distinct from BMPs and can minimize complications associated with BMP therapies. This study evaluates the efficacy of Nell-1 combined with demineralized bone matrix (DBM) as a novel bone graft material for interbody spine fusion using sheep, a phylogenetically advanced animal with biomechanical similarities to human spine. Nell-1+sheep DBM or Nell-1+heat-inactivated DBM (inDBM) (to determine the osteogenic effect of residual growth factors in DBM) were implanted in surgical sites as follows: (1) DBM only (control) (n=8); (2) DBM+0.3 mg/mL Nell-1 (n=8); (3) DBM+0.6 mg/mL Nell-1 (n=8); (4) inDBM only (control) (n=4); (5) inDBM+0.3 mg/mL Nell-1 (n=4); (6) inDBM+0.6 mg/mL Nell-1 (n=4). Fusion was assessed by computed tomography, microcomputed tomography, and histology. One hundred percent fusion was achieved by 3 months in the DBM+0.6 mg/mL Nell-1 group and by 4 months in the inDBM+0.6 mg/mL Nell-1 group; bone volume and mineral density were increased by 58% and 47%, respectively. These fusion rates are comparable to published reports on BMP-2 or autograft bone efficacy in sheep. Nell-1 is an independently potent osteogenic molecule that is efficacious and easily applied when combined with DBM.


Subject(s)
Nerve Tissue Proteins/metabolism , Osteogenesis/physiology , Spinal Fusion/methods , Animals , Female , Finite Element Analysis , Radiography , Sheep , Spine/diagnostic imaging , Spine/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...