Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 10: 2606, 2019.
Article in English | MEDLINE | ID: mdl-31781109

ABSTRACT

In systemic lupus erythematosus (SLE), perturbed immunoregulation underpins a pathogenic imbalance between regulatory and effector CD4+ T-cell activity. However, to date, the characterization of the CD4+ regulatory T cell (Treg) compartment in SLE has yielded conflicting results. Here we show that patients have an increased frequency of CD4+FOXP3+ cells in circulation owing to a specific expansion of thymically-derived FOXP3+HELIOS+ Tregs with a demethylated FOXP3 Treg-specific demethylated region. We found that the Treg expansion was strongly associated with markers of recent immune activation, including PD-1, plasma concentrations of IL-2 and the type I interferon biomarker soluble SIGLEC-1. Since the expression of the negative T-cell signaling molecule PTPN22 is increased and a marker of poor prognosis in SLE, we tested the influence of its missense risk allele Trp620 (rs2476601C>T) on Treg frequency. Trp620 was reproducibly associated with increased frequencies of thymically-derived Tregs in blood, and increased PD-1 expression on both Tregs and effector T cells (Teffs). Our results support the hypothesis that FOXP3+ Tregs are increased in SLE patients as a consequence of a compensatory mechanism in an attempt to regulate pathogenic autoreactive Teff activity. We suggest that restoration of IL-2-mediated homeostatic regulation of FOXP3+ Tregs by IL-2 administration could prevent disease flares rather than treating at the height of a disease flare. Moreover, stimulation of PD-1 with specific agonists, perhaps in combination with low-dose IL-2, could be an effective therapeutic strategy in autoimmune disease and in other immune disorders.


Subject(s)
Lupus Erythematosus, Systemic/immunology , Programmed Cell Death 1 Receptor/immunology , Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics , T-Lymphocytes, Regulatory/immunology , Adult , Aged , Aged, 80 and over , Alleles , Autoimmunity , Female , Forkhead Transcription Factors , Humans , Interleukin-2/blood , Lupus Erythematosus, Systemic/blood , Lupus Erythematosus, Systemic/genetics , Male , Middle Aged , Protein Tyrosine Phosphatase, Non-Receptor Type 22/immunology , Risk , Young Adult
2.
J Hematol Oncol ; 5: 45, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22853316

ABSTRACT

BACKGROUND: Although GATA1 is one of the most extensively studied haematopoietic transcription factors little is currently known about the physiological functions of its naturally occurring isoforms GATA1s and GATA1FL in humans-particularly whether the isoforms have distinct roles in different lineages and whether they have non-redundant roles in haematopoietic differentiation. As well as being of general interest to understanding of haematopoiesis, GATA1 isoform biology is important for children with Down syndrome associated acute megakaryoblastic leukaemia (DS-AMKL) where GATA1FL mutations are an essential driver for disease pathogenesis. METHODS: Human primary cells and cell lines were analyzed using GATA1 isoform specific PCR. K562 cells expressing GATA1s or GATA1FL transgenes were used to model the effects of the two isoforms on in vitro haematopoietic differentiation. RESULTS: We found no evidence for lineage specific use of GATA1 isoforms; however GATA1s transcripts, but not GATA1FL transcripts, are down-regulated during in vitro induction of terminal megakaryocytic and erythroid differentiation in the cell line K562. In addition, transgenic K562-GATA1s and K562-GATA1FL cells have distinct gene expression profiles both in steady state and during terminal erythroid differentiation, with GATA1s expression characterised by lack of repression of MYB, CCND2 and SKI. CONCLUSIONS: These findings support the theory that the GATA1s isoform plays a role in the maintenance of proliferative multipotent megakaryocyte-erythroid precursor cells and must be down-regulated prior to terminal differentiation. In addition our data suggest that SKI may be a potential therapeutic target for the treatment of children with DS-AMKL.


Subject(s)
Connective Tissue Growth Factor/genetics , DNA-Binding Proteins/genetics , Erythroid Cells/cytology , GATA1 Transcription Factor/genetics , Hematopoiesis/genetics , Proto-Oncogene Proteins c-myb/genetics , Proto-Oncogene Proteins/genetics , Cell Differentiation/physiology , Cell Line, Tumor , Down Syndrome/genetics , Down-Regulation , Humans , K562 Cells , Protein Isoforms
3.
Hum Mol Genet ; 21(12): 2815-24, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22403184

ABSTRACT

One mechanism by which disease-associated DNA variation can alter disease risk is altering gene expression. However, linkage disequilibrium (LD) between variants, mostly single-nucleotide polymorphisms (SNPs), means it is not sufficient to show that a particular variant associates with both disease and expression, as there could be two distinct causal variants in LD. Here, we describe a formal statistical test of colocalization and apply it to type 1 diabetes (T1D)-associated regions identified mostly through genome-wide association studies and expression quantitative trait loci (eQTLs) discovered in a recently determined large monocyte expression data set from the Gutenberg Health Study (1370 individuals), with confirmation sought in an additional data set from the Cardiogenics Transcriptome Study (558 individuals). We excluded 39 out of 60 overlapping eQTLs in 49 T1D regions from possible colocalization and identified 21 coincident eQTLs, representing 21 genes in 14 distinct T1D regions. Our results reflect the importance of monocyte (and their derivatives, macrophage and dendritic cell) gene expression in human T1D and support the candidacy of several genes as causal factors in autoimmune pancreatic beta-cell destruction, including AFF3, CD226, CLECL1, DEXI, FKRP, PRKD2, RNLS, SMARCE1 and SUOX, in addition to the recently described GPR183 (EBI2) gene.


Subject(s)
Diabetes Mellitus, Type 1/genetics , Genetic Predisposition to Disease/genetics , Monocytes/metabolism , Polymorphism, Single Nucleotide , Transcriptome , Adult , Aged , Algorithms , Female , Genome-Wide Association Study , Genotype , Humans , Linkage Disequilibrium , Male , Middle Aged , Models, Genetic , Quantitative Trait Loci/genetics , Risk Factors
4.
Pediatr Exerc Sci ; 23(4): 468-76, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22109774

ABSTRACT

The Actigraph is well established for measurement of both physical activity and sedentary behavior in children. The activPAL is being used increasingly in children, though with no published evidence on its use in free-living children to date. The present study compared the two monitors in preschool children. Children (n 23) wore both monitors simultaneously during waking hours for 5.6d and 10h/d. Daily mean percentage of time sedentary (nontranslocation of the trunk) was 74.6 (SD 6.8) for the Actigraph and 78.9 (SD 4.3) for activPAL. Daily mean percentage of time physically active (light intensity physical activity plus MVPA) was 25.4 (SD 6.8) for the Actigraph and 21.1 (SD 4.3) for the activPAL. Bland-Altman tests and paired t tests suggested small but statistically significant differences between the two monitors. Actigraph and activPAL estimates of sedentary behavior and physical activity in young children are similar at a group level.


Subject(s)
Monitoring, Ambulatory/instrumentation , Motor Activity , Sedentary Behavior , Child, Preschool , Female , Health Behavior , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...