Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 127(37): 8040-8048, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37673692

ABSTRACT

Pyrene excimer formation (PEF) was used to probe the intramacromolecular conformational change experienced by low generation pyrene-labeled PAMAM dendrimers referred to as PyCX-PAMAM-GY, where X (=4, 8, or 12) and Y (=0, 1, or 2) represent the number of atoms in the pyrenyl linker and the dendrimer generation, respectively. Each sample was studied in N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) with and without 5 mM HCl. Global analysis of the monomer and excimer time-resolved fluorescence decays using the model free analysis (MFA) yielded the average rate constant of excimer formation, ⟨k⟩, which was compared with the local pyrene concentration ([Py]loc) of the PyCX-PAMAM-GY samples calculated by assuming that the oligomeric segments constituting the dendrimer's interior obeyed Gaussian statistics. A notable decrease in ⟨k⟩ was observed upon the addition of 5 mM HCl to the PyCX-PAMAM-GY solutions and was attributed to swelling of the dendrimers resulting from the protonation of the internal tertiary amines. The reversibility of this conformational change could also be monitored via PEF. Solvent differences between DMF and DMSO were accounted for by dividing ⟨k⟩ by kdiff, the bimolecular rate constant for diffusive PEF of a n-hexyl-1-pyrenebutyramide model compound, to yield the ⟨k⟩/kdiff ratio. Comparison between the ⟨k⟩/kdiff ratios obtained for all the PyCX-PAMAM-GY samples with and without 5 mM HCl revealed a 13% increase in the radius of the PAMAM-GY dendrimers upon protonation of their internal tertiary amines in agreement with earlier reports. These experiments illustrate that PEF represents a powerful experimental means to quantitatively probe the intramacromolecular conformational changes of complex macromolecules in solution, in a manner that complements scattering techniques.

2.
Bioconjug Chem ; 34(8): 1467-1476, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37499133

ABSTRACT

A series of generation 3-5 dendrons based on a bis(2,2-hydroxymethylpropionic acid) (bis-MPA) scaffold bearing three respective lengths of linear poly(ethylene glycol) at their periphery and a dibenzocyclooctyne unit at their core was prepared. These dendrons were appended to the surface of azide-decorated α-chymotrypsin (α-CT) via strain-promoted azide-alkyne cycloaddition to yield a library of dendron-protein conjugates. These conjugates were characterized by FT-IR and NMR spectroscopy and were imaged using cryo-electron microscopy. The activity of the PEGylated α-CT-dendron conjugates was investigated using a small molecule (benzoyl-l-tyrosine p-nitroanilide) as well as different proteins of different sizes and crystallinities (casein and bovine serum albumin) as substrates. It was found that the activity of the conjugates toward the small molecule was largely retained, while the activity toward the proteins was significantly diminished. Furthermore, the results indicate that for most of the conjugates the PEG length had a more pronounced impact on enzyme activity than the dendron generation. Overall, the highest sieving ratios were found for α-CT-dendron conjugates decorated with G3-PEG2000, G4-PEG2000, and G5-PEG1000, with the latter two structures offering the best combination of sieving ratio and small molecule activity.


Subject(s)
Dendrimers , Dendrimers/chemistry , Cryoelectron Microscopy , Azides , Spectroscopy, Fourier Transform Infrared , Polyethylene Glycols/chemistry
3.
Polymers (Basel) ; 12(12)2020 Dec 05.
Article in English | MEDLINE | ID: mdl-33291456

ABSTRACT

The model-free analysis (MFA) was applied to measure the average rate constant () for pyrene excimer formation (PEF) in a series of pyrene-labeled dendrons referred to as Pyx-G(N), where x (= 2N) is the number of pyrenyl labels born by a dendron of generation N ranging from 1 to 6. was measured in four different solvents, namely tetrahydrofuran (THF), toluene, N,N-dimethylformamide (DMF), and dimethylsulfoxide (DMSO). was found to increase linearly with increasing local pyrene concentration ([Py]loc), where [Py]loc had been determined mathematically for the Pyx-G(N) dendrons. The slope of each straight line changed with the nature of the solvent and represented kdiff, the bimolecular rate constant for PEF. kdiff depended on the solvent viscosity (η) and the probability (p) for PEF upon encounter between an excited and a ground-state pyrene. In a same solvent, kdiff for the Pyx-G(N) dendrons was about 360 ± 30 times smaller than kdiff obtained for ethyl 4-(1-pyrene)butyrate (PyBE), a pyrene model compound similar to the pyrene derivative used to label the dendrons. The massive decrease in kdiff observed for the Pyx-G(N) samples reflected the massive loss in mobility experienced by the pyrenyl labels after being covalently attached onto a macromolecule compared to freely diffusing PyBE. Interestingly, the kdiff values obtained for the Pyx-G(N) dendrons and the PyBE model compound followed similar trends as a function of solvent, indicating that the difference in behavior between the kdiff values obtained in different solvents were merely due to the changes in the η and p values between the solvents. Normalizing the values obtained with the Pyx-G(N) dendrons by the kdiff values obtained for PyBE in the same solvents accounted for changes in η and p, resulting in a master curve upon plotting /(fdiff × kdiff) as a function of [Py]loc, where fdiff was introduced to account for some pyrene aggregation in the higher generation dendron (Py64-G(6)). This result demonstrates that represents a direct measure of [Py]loc in pyrene-labeled macromolecules.

4.
Angew Chem Int Ed Engl ; 58(25): 8448-8453, 2019 06 17.
Article in English | MEDLINE | ID: mdl-30893493

ABSTRACT

A series of 2,2-bis(hydroxymethyl)propionic acid dendrons of generation 2 through 8 having a strained cyclooctyne at the core and hydroxy groups at the periphery were prepared by a divergent method and used to functionalize azide-decorated α-chymotrypsin. The ability of the appended dendrons to selectively block enzyme activity (through a molecular sieving effect) was investigated using a small molecule substrate (benzoyl-l-tyrosine p-nitroanilide), as well as two proteins of different size (casein and bovine serum albumin). Additionally, the ability of dendrons to block complexation with a chymotrypsin antagonist, α-antichymotrypsin, was investigated, and it was found that the dendron coating effectively prevented inhibition by this antagonist. We found that a critical generation is required to achieve efficient sieving with bis-MPA dendrons, which illustrates the importance of macromolecular architecture and size in the shielding of proteins.


Subject(s)
Caseins/chemistry , Caseins/metabolism , Chymotrypsin/antagonists & inhibitors , Dendrimers/pharmacology , Polymers/chemistry , Polymers/metabolism , Propionates/pharmacology , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Animals , Cattle , Chymotrypsin/metabolism , Dendrimers/chemical synthesis , Dendrimers/chemistry , Molecular Structure , Particle Size , Propionates/chemical synthesis , Propionates/chemistry
5.
Biomacromolecules ; 18(12): 4054-4059, 2017 Dec 11.
Article in English | MEDLINE | ID: mdl-28968079

ABSTRACT

A common issue with hydrogel formulations is batch-to-batch irreproducibility originating from poorly defined polymer precursors. Here, we report the use of dendritic polymer end-groups to address this issue and maintain reproducibility between batches of poly(ethylene glycol) (PEG) hydrogels. Specifically, we synthesized two end-functionalized PEG chains: one with azide-terminated first- and second-generation dendrons and the other with strained cyclooctynes. The two complementary azide and alkyne polymers react via strain-promoted alkyne-azide cycloaddition (SPAAC) to produce hydrogels quickly in the absence of additional reagents or catalyst at low polymer concentrations. Hydrogels made with first-generation dendrons gelled in minutes and exhibited a small degree of swelling when incubated in PBS buffer at 37 °C, whereas hydrogels made from second-generation dendrons gelled in seconds with almost no swelling upon incubation at 37 °C. In both cases, the hydrogels proved reproducible, resulting in identical Young's modulus values from different batches. The hydrogels prepared with second-generation dendrons were seeded with human mesenchymal stem cells and showed high cell viability as well as cell spreading over a two-week time frame. These studies show that the SPAAC hydrogels are noncytotoxic and are capable of supporting cell growth.


Subject(s)
Alkynes/chemistry , Azides/chemistry , Cross-Linking Reagents/chemistry , Dendrimers/chemistry , Hydrogels/chemistry , Polyethylene Glycols/chemistry , Catalysis , Cell Survival/drug effects , Cells, Cultured , Cycloaddition Reaction/methods , Elastic Modulus , Humans , Mesenchymal Stem Cells/drug effects , Polymers/chemistry , Reproducibility of Results
6.
Biomacromolecules ; 16(9): 3033-41, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26295201

ABSTRACT

A fifth generation aliphatic polyester dendrimer was functionalized with vinyl groups at the periphery and a dipicolylamine Tc(I) chelate at the core. This structure was PEGylated with three different molecular weight mPEGs (mPEG160, mPEG350, and mPEG750) using thiol-ene click chemistry. The size of the resulting macromolecules was evaluated using dynamic light scattering, and it was found that the dendrimer functionalized with mPEG750 was molecularly dispersed in water, exhibiting a hydrodynamic diameter of 9.2 ± 2.1 nm. This PEGylated dendrimer was subsequently radiolabeled using [(99m)Tc(CO)3(H2O)3](+) and purified to high (>99%) radiochemical purity. Imaging studies were initially performed on healthy rats to allow comparison to previous Tc-labeled dendrimers and then on xenograft murine tumor models, which collectively showed that the dendrimers circulated in the blood for an extended period of time (up to 24 h). Furthermore, the radiolabeled dendrimer accumulated in H520 xenograft tumors, which could be visualized by single-photon emission computed tomography (SPECT). The reported PEGylated aliphatic polyester dendrimers represent a new platform for developing tumor-targeted molecular imaging probes and therapeutics.


Subject(s)
Dendrimers , Isotope Labeling , Neoplasms, Experimental/drug therapy , Polyesters , Polyethylene Glycols , Technetium , Animals , Dendrimers/chemical synthesis , Dendrimers/chemistry , Dendrimers/pharmacology , Female , Humans , Mice , Mice, Nude , Neoplasms, Experimental/diagnostic imaging , Polyesters/chemical synthesis , Polyesters/chemistry , Polyesters/pharmacology , Polyethylene Glycols/chemical synthesis , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Radiography , Rats , Technetium/chemistry , Technetium/pharmacology , Tomography, Emission-Computed, Single-Photon , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...