Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 26(12): 6702-6714, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33090598

ABSTRACT

Measuring the status and trends of biodiversity is critical for making informed decisions about the conservation, management or restoration of species, habitats and ecosystems. Defining the reference state against which status and change are measured is essential. Typically, reference states describe historical conditions, yet historical conditions are challenging to quantify, may be difficult to falsify, and may no longer be an attainable target in a contemporary ecosystem. We have constructed a conceptual framework to help inform thinking and discussion around the philosophical underpinnings of reference states and guide their application. We characterize currently recognized historical reference states and describe them as Pre-Human, Indigenous Cultural, Pre-Intensification and Hybrid-Historical. We extend the conceptual framework to include contemporary reference states as an alternative theoretical perspective. The contemporary reference state framework is a major conceptual shift that focuses on current ecological patterns and identifies areas with higher biodiversity values relative to other locations within the same ecosystem, regardless of the disturbance history. We acknowledge that past processes play an essential role in driving contemporary patterns of diversity. The specific context for which we design the contemporary conceptual frame is underpinned by an overarching goal-to maximize biodiversity conservation and restoration outcomes in existing ecosystems. The contemporary reference state framework can account for the inherent differences in the diversity of biodiversity values (e.g. native species richness, habitat complexity) across spatial scales, communities and ecosystems. In contrast to historical reference states, contemporary references states are measurable and falsifiable. This 'road map of reference states' offers perspective needed to define and assess the status and trends in biodiversity and habitats. We demonstrate the contemporary reference state concept with an example from south-eastern Australia. Our framework provides a tractable way for policy-makers and practitioners to navigate biodiversity assessments to maximize conservation and restoration outcomes in contemporary ecosystems.


Subject(s)
Conservation of Natural Resources , Ecosystem , Benchmarking , Biodiversity , Humans , South Australia
2.
Ecol Appl ; 29(7): e01970, 2019 10.
Article in English | MEDLINE | ID: mdl-31302942

ABSTRACT

Effective environmental assessment and management requires quantifiable biodiversity targets. Biodiversity benchmarks define these targets by focusing on specific biodiversity metrics, such as species richness. However, setting fixed targets can be challenging because many biodiversity metrics are highly variable, both spatially and temporally. We present a multivariate, hierarchical Bayesian method to estimate biodiversity benchmarks based on the species richness and cover of native terrestrial vegetation growth forms. This approach uses existing data to quantify the empirical distributions of species richness and cover within growth forms, and we use the upper quantiles of these distributions to estimate contemporary, "best-on-offer" biodiversity benchmarks. Importantly, we allow benchmarks to differ among vegetation types, regions, and seasons, and with changes in recent rainfall. We apply our method to data collected over 30 yr at ~35,000 floristic plots in southeastern Australia. Our estimated benchmarks were broadly consistent with existing expert-elicited benchmarks, available for a small subset of vegetation types. However, in comparison with expert-elicited benchmarks, our data-driven approach is transparent, repeatable, and updatable; accommodates important spatial and temporal variation; aligns modeled benchmarks directly with field data and the concept of best-on-offer benchmarks; and, where many benchmarks are required, is likely to be more efficient. Our approach is general and could be used broadly to estimate biodiversity targets from existing data in highly variable environments, which is especially relevant given rapid changes in global environmental conditions.


Subject(s)
Benchmarking , Biodiversity , Australia , Bayes Theorem , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...