Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 234(2): 412-421, 2022 04.
Article in English | MEDLINE | ID: mdl-35075689

ABSTRACT

Damage can be signalled by extracellular ATP (eATP) using plasma membrane (PM) receptors to effect cytosolic free calcium ion ([Ca2+ ]cyt ) increase as a second messenger. The downstream PM Ca2+ channels remain enigmatic. Here, the Arabidopsis thaliana Ca2+ channel subunit CYCLIC NUCLEOTIDE-GATED CHANNEL2 (CNGC2) was identified as a critical component linking eATP receptors to downstream [Ca2+ ]cyt signalling in roots. Extracellular ATP-induced changes in single epidermal cell PM voltage and conductance were measured electrophysiologically, changes in root [Ca2+ ]cyt were measured with aequorin, and root transcriptional changes were determined by quantitative real-time PCR. Two cngc2 loss-of-function mutants were used: cngc2-3 and defence not death1 (which expresses cytosolic aequorin). Extracellular ATP-induced transient depolarization of Arabidopsis root elongation zone epidermal PM voltage was Ca2+ dependent, requiring CNGC2 but not CNGC4 (its channel co-subunit in immunity signalling). Activation of PM Ca2+ influx currents also required CNGC2. The eATP-induced [Ca2+ ]cyt increase and transcriptional response in cngc2 roots were significantly impaired. CYCLIC NUCLEOTIDE-GATED CHANNEL2 is required for eATP-induced epidermal Ca2+ influx, causing depolarization leading to [Ca2+ ]cyt increase and damage-related transcriptional response.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Adenosine Triphosphate/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Calcium/metabolism , Cyclic Nucleotide-Gated Cation Channels/genetics , Cyclic Nucleotide-Gated Cation Channels/metabolism , Cyclic Nucleotide-Gated Cation Channels/pharmacology , Epidermal Cells , Epidermis/metabolism , Nucleotides, Cyclic/metabolism , Nucleotides, Cyclic/pharmacology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...