Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 61(41): e202210601, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-35973967

ABSTRACT

The transition metal catalyzed hydrogenation of alkenes is a well-developed technology used on lab scale as well as on large scales in the chemical industry. Site- and chemoselective mono-hydrogenations of polarized conjugated dienes remain challenging. Instead, stoichiometric main-group hydrides are used rather than H2 . As part of an effort to develop a scalable route to prepare geranylacetone, we discovered that Rh(CO)2 acac/xantphos based catalysts enable the selective mono-hydrogenation of electron-poor 1,3-dienes, enones, and other polyunsaturated substrates. D-labeling and DFT studies support a mechanism where a nucleophilic RhI -hydride selectively adds to electron-poor alkenes and the resulting Rh-enolate undergoes subsequent inner-sphere protonation by alcohol solvent. The finding that (Ln )Rh(H)(CO) type catalysts can enable selective mono-hydrogenation of electron-poor 1,3-dienes provides a valuable tool in the design of related chemoselective hydrogenation processes.

2.
Angew Chem Int Ed Engl ; 60(51): 26495-26499, 2021 12 13.
Article in English | MEDLINE | ID: mdl-34658132

ABSTRACT

The enantioselective generation of quaternary carbon centers remains challenging but is of growing importance for the preparation of functional molecules. Metal catalyzed allylic alkylations of tertiary electrophiles can provide access to these substructures but remain generally incompatible with organometallic benzyl nucleophiles. Here we demonstrate that electron-deficient arylacetates can serve as benzyl nucleophile surrogates to generate enantioenriched acyclic molecules containing a quaternary carbon center via a two-step substitution-decarboxylation process using isoprene monoxide. Products are often obtained in >90 % ee using a commercially available catalyst. An array of electron-withdrawing functional groups on the arylacetate moiety are tolerated. The lactone generated by the initial substitution reaction can be used in further stereoselective transformations to prepare molecules with acyclic vicinal quaternary stereocenters.

3.
J Am Chem Soc ; 143(28): 10770-10777, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34253021

ABSTRACT

Metal-catalyzed enantioselective conjugate additions are highly reliable methods for stereoselective synthesis; however, multicomponent reactions that are initiated by conjugate arylation of acyclic π-systems are rare. These reactions generally proceed with poor diastereoselectivity while requiring basic, moisture sensitive organometallic nucleophiles. Here, we show that Rh-catalysts supported by a tetrafluorobenzobarrelene ligand (Ph-tfb) enable the enantio-, diastereo-, and Z-selective α,δ-difunctionalization of electron-deficient 1,3-dienes with organoboronic acid nucleophiles and aldehyde electrophiles to generate Z-homoallylic alcohols with three stereocenters. The reaction accommodates diene substrates activated by ester, amide, ketone, or aromatic groups and can be used to couple aryl, alkenyl, or alkyl aldehydes. Diastereoselective functionalization of the Z-olefin unit in the addition products allows for the generation of compounds with five stereocenters in high dr and ee. Mechanistic studies suggest aldehyde allylrhodation is the rate-determining step, and unlike reactions of analogous Rh-enolates, the Rh-allyl species generated by δ-arylation undergoes aldehyde trapping rather than protonolysis, even when water is present as a cosolvent. These findings should have broader implications in the use of privileged metal-catalyzed conjugate addition reactions as entry points toward the preparation of acyclic molecules containing nonadjacent stereocenters.

SELECTION OF CITATIONS
SEARCH DETAIL
...