Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Schizophr ; 3: 19, 2017.
Article in English | MEDLINE | ID: mdl-28560265

ABSTRACT

Our previous study demonstrated that phospholipase C beta 1 mRNA was down-regulated in Brodmann's area 46 from subjects with schizophrenia. However, phospholipase C beta 1 protein has also been shown to be lower in Brodmann's area 8 and 9 from teenage suicide subjects, creating a potential confound in interpreting the findings in schizophrenia due to the high suicide rate associated with this disorder. To begin to reconcile and consolidate these findings, in this study, we measured mRNA and protein levels of phospholipase C beta 1 variants a and b in Brodmann's area 46 and Brodmann's area 9 from subjects with schizophrenia, many of whom were suicide completers, and determined the diagnostic specificity of observed findings. Consistent with our previous study, levels of phospholipase C beta 1 a and b mRNA, but not protein, were lower in Brodmann's area 46 from subjects with schizophrenia. In Brodmann's area 9, phospholipase C beta 1a protein levels were lower in subjects with schizophrenia, while phospholipase C beta 1b mRNA was higher and protein was lower in those that had died of suicide. Altered protein levels in Brodmann's area 9 appeared to be diagnostically specific, as we did not detect these changes in subjects with bipolar disorder, major depressive disorder or suicide completers with no diagnosis of mental illness. We further assessed the relationship between phospholipase C beta 1 and levels of muscarinic receptors (CHRMs) that signal through this protein, in both human and Chrm knockout mouse central nervous system tissue, and found no strong relationship between the two. Understanding central nervous system differences in downstream effector pathways in schizophrenia may lead to improved treatment strategies and help to identify those at risk of suicide.

2.
Mol Psychiatry ; 13(7): 661-72, 2008 Jul.
Article in English | MEDLINE | ID: mdl-17667964

ABSTRACT

Phospholipase C-beta1 (PLC-beta1) is a rate-limiting enzyme implicated in postnatal-cortical development and neuronal plasticity. PLC-beta1 transduces intracellular signals from specific muscarinic, glutamate and serotonin receptors, all of which have been implicated in the pathogenesis of schizophrenia. Here, we present data to show that PLC-beta1 knockout mice display locomotor hyperactivity, sensorimotor gating deficits as well as cognitive impairment. These changes in behavior are regarded as endophenotypes homologous to schizophrenia-like symptoms in rodents. Importantly, the locomotor hyperactivity and sensorimotor gating deficits in PLC-beta1 knockout mice are subject to beneficial modulation by environmental enrichment. Furthermore, clozapine but not haloperidol (atypical and typical antipsychotics, respectively) rescues the sensorimotor gating deficit in these animals, suggesting selective predictive validity. We also demonstrate a relationship between the beneficial effects of environmental enrichment and levels of M1/M4 muscarinic acetylcholine receptor binding in the neocortex and hippocampus. Thus we have demonstrated a novel mouse model, displaying disruption of multiple postsynaptic signals implicated in the pathogenesis of schizophrenia, a relevant behavioral phenotype and associated gene-environment interactions.


Subject(s)
Clozapine/therapeutic use , Phospholipase C beta/deficiency , Schizophrenia/genetics , Schizophrenia/rehabilitation , Animals , Antipsychotic Agents/therapeutic use , Disease Models, Animal , Environment , Hippocampus/physiopathology , Mice , Mice, Knockout , Motor Activity , Neocortex/physiopathology , Phenotype , Receptors, Muscarinic/physiology , Schizophrenia/drug therapy , Schizophrenia/enzymology , Schizophrenic Psychology
SELECTION OF CITATIONS
SEARCH DETAIL
...