Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Evolution ; 76(6): 1287-1300, 2022 06.
Article in English | MEDLINE | ID: mdl-35420697

ABSTRACT

Eco-evolutionary feedbacks among multiple species occur when one species affects another species' evolution via its effects on the abundance and traits of a shared partner species. What happens if those two species enact opposing effects on their shared partner's population growth? Furthermore, what if those two kinds of interactions involve separate traits? For example, many plants produce distinct suites of traits that attract pollinators (mutualists) and deter herbivores (antagonists). Here, we develop a model to explore how pollinators and herbivores may influence each other's interactions with a shared plant species via evolutionary effects on the plant's nectar and toxin traits. The model results predict that herbivores indirectly select for the evolution of increased nectar production by suppressing plant population growth. The model also predicts that pollinators indirectly select for the evolution of increased toxin production by plants and increased counterdefenses by herbivores via their positive effects on plant population growth. Unless toxins directly affect pollinator foraging, plants always evolve increases in attraction and defense traits when they interact with both kinds of foragers. This work highlights the value of incorporating ecological dynamics to understand the entangled evolution of mutualisms and antagonisms in natural communities.


Subject(s)
Herbivory , Plant Nectar , Feedback , Flowers , Pollination
2.
J Hered ; 113(1): 1-15, 2022 02 17.
Article in English | MEDLINE | ID: mdl-34643239

ABSTRACT

Indirect genetic effects (IGE) occur when an individual's phenotype is influenced by genetic variation in conspecifics. Opportunities for IGE are ubiquitous, and, when present, IGE have profound implications for behavioral, evolutionary, agricultural, and biomedical genetics. Despite their importance, the empirical study of IGE lags behind the development of theory. In large part, this lag can be attributed to the fact that measuring IGE, and deconvoluting them from the direct genetic effects of an individual's own genotype, is subject to many potential pitfalls. In this Perspective, we describe current challenges that empiricists across all disciplines will encounter in measuring and understanding IGE. Using ideas and examples spanning evolutionary, agricultural, and biomedical genetics, we also describe potential solutions to these challenges, focusing on opportunities provided by recent advances in genomic, monitoring, and phenotyping technologies. We hope that this cross-disciplinary assessment will advance the goal of understanding the pervasive effects of conspecific interactions in biology.


Subject(s)
Biological Evolution , Genome , Genotype , Phenotype
3.
Am Nat ; 198(4): 441-459, 2021 10.
Article in English | MEDLINE | ID: mdl-34559615

ABSTRACT

AbstractResource dynamics influence the contemporary ecology of consumer-resource mutualisms. Suites of resource traits, such as floral nectar components, also evolve in response to different selective pressures, changing the ecological dynamics of the interacting species at the evolutionary equilibrium. Here we explore the evolution of resource-provisioning traits in a biotically pollinated plant that produces nectar as a resource for beneficial consumers. We develop a mathematical model describing natural selection on two quantitative nectar traits: maximum nectar production rate and maximum nectar reservoir volume. We use this model to examine how nectar production dynamics evolve under different ecological conditions that impose varying cost-benefit regimes on resource provisioning. The model results predict that natural selection favors higher nectar production when ecological factors limit the plant or pollinator's abundance (e.g., a lower productivity environment or a higher pollinator conversion efficiency). We also find that nectar traits evolve as a suite in which higher costs of producing one trait select for a compensatory increase in investment in the other trait. This empirically explicit approach to studying the evolution of consumer-resource mutualisms illustrates how natural selection acting via direct and indirect pathways of species interactions generates patterns of resource provisioning seen in natural systems.


Subject(s)
Pollination , Symbiosis , Flowers , Plant Nectar , Selection, Genetic
4.
J Evol Biol ; 31(8): 1239-1250, 2018 08.
Article in English | MEDLINE | ID: mdl-29876989

ABSTRACT

Females in many animal species must discriminate between conspecific and heterospecific males when choosing mates. Such mating preferences that discriminate against heterospecifics may inadvertently also affect the mating success of conspecific males, particularly those with more extreme phenotypes. From this expectation, we hypothesized that female mate choice should cause Enallagma females (Odonata: Coenagrionidae) to discriminate against conspecific males with more extreme phenotypes of the claspers males use to grasp females while mating - the main feature of species mate recognition in these species. To test this, we compared cerci sizes and shapes between males that were captured while mating with females to males that were captured at the same time but not mating in three Enallagma species. In contrast to our hypothesis, we found only one of forty comparisons of shape variation that was consistent with females discriminating against males with more extreme cerci shapes. Instead, differences in cerci shape between mating and single males suggested that females displayed directional preferences on 1-4 aspects of cerci shape in two of the species in our samples. These results suggest that whereas some directional biases in mating based on cerci shape occur, the intraspecific phenotypic variation in male cerci size and shape is likely not large enough for females to express any significant incidental discrimination among conspecifics with more extreme shapes.


Subject(s)
Biological Evolution , Mating Preference, Animal , Odonata/genetics , Odonata/physiology , Animals , Female , Male , Odonata/anatomy & histology , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...