Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 11857, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28928373

ABSTRACT

Excessive reactive oxygen species (ROS) can damage proteins, lipids, and DNA, which result in cell damage and death. The outcomes can be acute, as seen in stroke, or more chronic as observed in age-related diseases such as Parkinson's disease. Here we investigate the antioxidant ability of a novel synthetic flavonoid, Proxison (7-decyl-3-hydroxy-2-(3,4,5-trihydroxyphenyl)-4-chromenone), using a range of in vitro and in vivo approaches. We show that, while it has radical scavenging ability on par with other flavonoids in a cell-free system, Proxison is orders of magnitude more potent than natural flavonoids at protecting neural cells against oxidative stress and is capable of rescuing damaged cells. The unique combination of a lipophilic hydrocarbon tail with a modified polyphenolic head group promotes efficient cellular uptake and moderate mitochondrial enrichment of Proxison. Importantly, in vivo administration of Proxison demonstrated effective and well tolerated neuroprotection against cell loss in a zebrafish model of dopaminergic neurodegeneration.


Subject(s)
Flavonoids , Free Radical Scavengers , Neurons/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Flavonoids/chemistry , Flavonoids/pharmacokinetics , Flavonoids/pharmacology , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacokinetics , Free Radical Scavengers/pharmacology , Humans , Neurons/pathology
2.
Lipids ; 42(6): 573-82, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17473943

ABSTRACT

To characterize parameters influencing the antioxidant activity at interfaces a novel ESR approach was developed, which facilitates the investigation of the reaction stoichiometry of antioxidants towards stable radicals. To relate the activity of antioxidants towards the location of radicals at interfaces NMR experiments were conducted. Micellar solutions of SDS, Brij and CTAB were used to model interfaces of different chemical nature. The hydrophilic Fremy's radical was found to be solubilized exclusively in the aqueous phase of SDS micellar solution but partitioned partly into the hydrophilic headgroup area of Brij micelles. In contrast the hydrophobic galvinoxyl was exclusively located in the micellar phase with the increasing depth of intercalation in the order SDS < Brij < CTAB. Gallates revealed a higher stoichiometric factor towards galvinoxyl in CTAB systems, which is accounted to a concentration effect of antioxidant and radical being both solubilized in the palisade layer. In contrast, in SDS solutions hardly any reaction between galvinoxyl and gallates was found. SDS acted as a physical barrier between radical (palisade layer) and antioxidant (stern layer). The influence of the hydrophobic properties of the antioxidant was clearly seen in Brij micelles. Elongation of the alkyl chain in gallate molecule resulted in increasing stoichiometric factors in the presence of galvinoxyl being located in the deeper region of the bulky headgroup area. The reverse trend was found in the presence of Fremy's radical being located in the hydrated area of the micelles.


Subject(s)
Antioxidants/chemistry , Antioxidants/pharmacology , Micelles , Phenols/chemistry , Phenols/pharmacology , Surface-Active Agents , Cetomacrogol/chemistry , Cetrimonium Compounds/chemistry , Electron Spin Resonance Spectroscopy/methods , Free Radical Scavengers/pharmacology , Free Radicals/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Oxidation-Reduction/drug effects , Sodium Dodecyl Sulfate/chemistry , Solubility , Structure-Activity Relationship , Surface Properties
3.
Bioorg Med Chem ; 12(9): 2079-98, 2004 May 01.
Article in English | MEDLINE | ID: mdl-15080911

ABSTRACT

The flavonol myricetin, reacts with oxygen-centred galvinoxyl radicals 28 times faster than d-alpha-tocopherol (vitamin E), the main lipid-soluble antioxidant in biological membranes. Moreover, each myricetin molecule reduces twice as many such radicals as vitamin E. However, myricetin fails to protect vitamin E-deficient microsomes from lipid peroxidation as assessed by the formation of thiobarbituric acid reactive substances (TBARS). Novel and potentially therapeutic antioxidants have been prepared that combine the radical-scavenging ability of a myricetin-like head group with a lipophilic chain similar to that of vitamin E. C(6)-C(12) alkyl chains are attached to the A-ring of either a 3,3',4',5'-tetrahydroxyflavone or a 3,2',4',5'-tetrahydroxyflavone head group to give lipophilic flavonoids (C log P = 4 to 10) that markedly inhibit iron-ADP catalysed oxidation of microsomal preparations. Orientation of the head group as well as total lipophilicity are important determinants of antioxidant efficacy. MM2 models indicate that our best straight chain 7-alkylflavonoids embed to the same depth in the membrane as vitamin E. The flavonoid head groups are prepared by aldol condensation followed by Algar-Flynn-Oyamada (AFO) oxidation or by Baker-Venkataraman rearrangement. The alkyl tails are introduced by Suzuki or Negishi palladium-catalysed cross-coupling or by cross-metathesis catalysed by first generation Grubbs catalyst, which tolerate phenolic hydroxyl and ketone groups.


Subject(s)
Antioxidants/pharmacology , Flavonoids/pharmacology , Free Radical Scavengers/pharmacology , Lipid Peroxidation/drug effects , Microsomes/drug effects , Vitamin E/chemistry , Antioxidants/chemistry , Flavonoids/chemistry , Free Radical Scavengers/chemistry , Mass Spectrometry
4.
J Agric Food Chem ; 51(6): 1684-90, 2003 Mar 12.
Article in English | MEDLINE | ID: mdl-12617605

ABSTRACT

There is current interest in the use of naturally occurring flavonoids as antioxidants for the preservation of foods and the prevention of diseases such as atherosclerosis and cancers. To establish the molecular characteristics required for maximum antioxidant activity, electron spin resonance (ESR) spectroscopy has been used to determine the stoichiometry and kinetics of the hydrogen-donating ability of 15 flavonoids and d-alpha-tocopherol to galvinoxyl, a resonance-stabilized, sterically protected aryloxyl radical. The second-order reaction rates, which will be governed by O-H bond dissociation energies, were myricetin > morin > quercetin > fisetin approximately catechin > kaempferol approximately luteolin > rutin > d-alpha-tocopherol > taxifolin > tamarixetin > myricetin 3',4',5'-trimethyl ether > datiscetin > galangin > hesperitin approximately apigenin. Reactivity is highly dependant on the configuration of OH groups on the flavonoid B and C rings, there being little contribution from the A ring to antioxidant effectiveness. Highest reaction rates and stoichiometries were observed with flavonols capable of being oxidized to orthoquinones or extended paraquinones. However, rates and stoichiometries did not always correlate and the data suggest that kinetic factors may be of greater importance within a biological context.


Subject(s)
Antioxidants/chemistry , Electron Spin Resonance Spectroscopy , Flavonoids/chemistry , Benzhydryl Compounds/chemistry , Free Radicals/chemistry , Kinetics , Thermodynamics , alpha-Tocopherol/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...