Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 14(32): 11779-11789, 2022 Aug 18.
Article in English | MEDLINE | ID: mdl-35920737

ABSTRACT

Most high-quality quantum dots (QDs) are synthesized in the organic phase, and are often coated with polymers for use in aqueous biological environments. QDs can exhibit fluorescence losses during phase transfer, but evaluating underlying mechanisms (e.g., oxidation, surface etching, loss of colloidal stability) can be challenging because of variation in synthesis methods. Here, fluorescence stability of QDs encapsulated in block co-polymer (BCP) micelles was investigated as a function of BCP terminal functionalization (i.e., -OH, -COOH, and -NH2 groups) and synthesis method (i.e., electrohydrodynamic emulsification-mediated selfassembly (EE-SA), sonication, and manual shaking). Fluorescence losses, fluorescence intensity, energy spectra, and surface composition were assessed using spectrofluorometry and cathodoluminescence spectroscopy (CL) with integrated X-ray photoemission spectroscopy (XPS). QDs passivated using charged BCPs exhibited 50-80% lower fluorescence intensity than those displaying neutral groups (e.g., -OH), which CL/XPS revealed to result from oxidation of surface Cd to CdO. Fluorescence losses were higher for processes with slow formation speed, but minimized in the presence of poly(vinyl alcohol) (PVA) surfactant. These data suggest slower BCP aggregation kinetics rather than electrostatic chain repulsion facilitated QD oxidation. Thus, polymer coating method and BCP structure influence QD oxidation during phase transfer and should be selected to maximize fast aggregation kinetics.

2.
Opt Express ; 25(2): 881-887, 2017 Jan 23.
Article in English | MEDLINE | ID: mdl-28157976

ABSTRACT

The correspondence residuals due to the discrepancy between the reality and the shape model in use are analyzed for the modal phase measuring deflectometry. Slope residuals are calculated from these discrepancies between the modal estimation and practical acquisition. Since the shape mismatch mainly occurs locally, zonal integration methods which are good at dealing with local variations are used to reconstruct the height residual for compensation. Results of both simulation and experiment indicate the proposed height compensation method is effective, which can be used as a post-complement for the modal phase measuring deflectometry.

3.
Opt Express ; 24(21): 24649-24664, 2016 Oct 17.
Article in English | MEDLINE | ID: mdl-27828190

ABSTRACT

In this work, a model based method is applied to phase measuring deflectometry, named modal phase measuring deflectometry. The height and slopes of the surface under test are represented by mathematical models and updated by optimizing the model coefficients to minimize the discrepancy between the reprojection in ray tracing and the actual measurement. The pose of the screen relative to the camera is pre-calibrated and further optimized together with the shape coefficients of the surface under test. Simulations and experiments are conducted to demonstrate the feasibility of the proposed approach.

SELECTION OF CITATIONS
SEARCH DETAIL
...