Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Am J Hum Genet ; 109(11): 1960-1973, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36332611

ABSTRACT

Sharing genomic variant interpretations across laboratories promotes consistency in variant assertions. A landscape analysis of Australian clinical genetic-testing laboratories in 2017 identified that, despite the national-accreditation-body recommendations encouraging laboratories to submit genotypic data to clinical databases, fewer than 300 variants had been shared to the ClinVar public database. Consultations with Australian laboratories identified resource constraints limiting routine application of manual processes, consent issues, and differences in interpretation systems as barriers to sharing. This information was used to define key needs and solutions required to enable national sharing of variant interpretations. The Shariant platform, using both the GRCh37 and GRCh38 genome builds, was developed to enable ongoing sharing of variant interpretations and associated evidence between Australian clinical genetic-testing laboratories. Where possible, two-way automated sharing was implemented so that disruption to laboratory workflows would be minimized. Terms of use were developed through consultation and currently restrict access to Australian clinical genetic-testing laboratories. Shariant was designed to store and compare structured evidence, to promote and record resolution of inter-laboratory classification discrepancies, and to streamline the submission of variant assertions to ClinVar. As of December 2021, more than 14,000 largely prospectively curated variant records from 11 participating laboratories have been shared. Discrepant classifications have been identified for 11% (28/260) of variants submitted by more than one laboratory. We have demonstrated that co-design with clinical laboratories is vital to developing and implementing a national variant-interpretation sharing effort. This approach has improved inter-laboratory concordance and enabled opportunities to standardize interpretation practices.


Subject(s)
Databases, Genetic , Laboratories , Humans , Genetic Variation , Australia , Genetic Testing
3.
PLoS One ; 15(7): e0235613, 2020.
Article in English | MEDLINE | ID: mdl-32634176

ABSTRACT

Germline variants inactivating the mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2 cause Lynch syndrome that implies an increased cancer risk, where colon and endometrial cancer are the most frequent. Identification of these pathogenic variants is important to identify endometrial cancer patients with inherited increased risk of new cancers, in order to offer them lifesaving surveillance. However, several other genes are also part of the MMR pathway. It is therefore relevant to search for variants in additional genes that may be associated with cancer risk by including all known genes involved in the MMR pathway. Next-generation sequencing was used to screen 22 genes involved in the MMR pathway in constitutional DNA extracted from full blood from 199 unselected endometrial cancer patients. Bioinformatic pipelines were developed for identification and functional annotation of variants, using several different software tools and custom programs. This facilitated identification of 22 exonic, 4 UTR and 9 intronic variants that could be classified according to pathogenicity. This study has identified several germline variants in genes of the MMR pathway that potentially may be associated with an increased risk for cancer, in particular endometrial cancer, and therefore are relevant for further investigation. We have also developed bioinformatics strategies to analyse targeted sequencing data, including low quality data and genomic regions outside of the protein coding exons of the relevant genes.


Subject(s)
DNA Mismatch Repair , Endometrial Neoplasms/pathology , Mismatch Repair Endonuclease PMS2/genetics , MutL Protein Homolog 1/genetics , MutS Homolog 2 Protein/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , DNA Copy Number Variations , DNA, Neoplasm/blood , DNA, Neoplasm/chemistry , DNA, Neoplasm/metabolism , Endometrial Neoplasms/genetics , Exons , Female , High-Throughput Nucleotide Sequencing , Humans , Introns , Risk Factors , Untranslated Regions/genetics
4.
Am J Med Genet A ; 182(7): 1801-1806, 2020 07.
Article in English | MEDLINE | ID: mdl-32424948

ABSTRACT

Intellectual disability (ID) is a complicated and multifactorial condition often with an unclear cause. Advancements in diagnostic techniques have identified genetic causes in a significant proportion. Pathogenic variants in TRIP12, encoding for an E3 ligand in the ubiquitin-protease pathway, have previously been identified as a cause of ID with autistic behavior and dysmorphic features. We report two unrelated patients with de novo mutations in TRIP12 and diagnoses of global developmental delay, autism spectrum disorder and dysmorphic features, as well as a range of other characteristics. Exome sequencing was utilized as part of an extensive genetic workup for both individuals. The genotypic and phenotypic data for both patients has been collated with previously reported data. Epilepsy was noted in about 20% published cases. One of our patents had epilepsy. These cases highlight the variable phenotypic presentations of TRIP12 variations while emphasizing the core features of ID and speech delay, with or without autistic features and epilepsy.


Subject(s)
Body Dysmorphic Disorders/genetics , Carrier Proteins/genetics , Developmental Disabilities/genetics , Intellectual Disability/genetics , Ubiquitin-Protein Ligases/genetics , Adolescent , Adult , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/pathology , Body Dysmorphic Disorders/diagnosis , Body Dysmorphic Disorders/pathology , Child , Child, Preschool , Developmental Disabilities/diagnosis , Developmental Disabilities/pathology , Epilepsy/diagnosis , Epilepsy/genetics , Epilepsy/pathology , Female , Humans , Intellectual Disability/diagnosis , Intellectual Disability/pathology , Language Development Disorders/diagnosis , Language Development Disorders/genetics , Language Development Disorders/pathology , Male , Exome Sequencing , Young Adult
5.
Mol Genet Genomic Med ; 4(2): 223-31, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27064304

ABSTRACT

BACKGROUND: Lynch syndrome, the most frequent hereditary colorectal cancer syndrome, is caused by defects in mismatch repair genes. Genetic testing is important in order to identify mutation carriers who can benefit from intensive surveillance programs. One of the challenges with genetic testing is the interpretation of pathogenicity of detected DNA variants. The aim of this study was to investigate all putative pathogenic variants tested for at the Division of Molecular Medicine, Pathology North, in Newcastle, Australia, to establish whether previous variant classification is in accordance with that recently performed in the InSiGHT collaboration. METHODS: Prediction programs and available literature were used to classify new variants or variants without classification. RESULTS: We identified 333 mutation positive families, in which 211 different putative pathogenic mismatch repair mutations were found. Most variants with an InSiGHT classification (141 out of 146) were in accordance with our classification. Five variants were discordant, of which one can definitively be reclassified according to the InSiGHT scheme as class 5. Sixty-four variants had not been classified by InSiGHT, of whom 55 have not been previously reported. CONCLUSION: In conclusion, we found that our classifications were mostly in accordance with the InSiGHT scheme. In addition to already known MMR mutations, we have also presented 55 novel pathogenic or putative pathogenic mutations.

6.
Article in English | MEDLINE | ID: mdl-26884819

ABSTRACT

Since the identification of BRCA1 there has only ever been described two bi-allelic mutation carriers, one of whom was subsequently shown to be a mono-allelic carrier. The second patient diagnosed with two BRCA1 mutations appears to be accurate but there remain some questions about the missense variant identified in that patient. In this report we have identified a woman who is a bi-allelic mutation carrier of BRCA1 and provide an explanation as to why this patient has a phenotype very similar to that of any mono-allelic mutation carrier. The splice variant identified in this patient appears to be associated with the up-regulation of a BRCA1 splice variant that rescues the lethality of being a double mutant. The consequences of the findings of this report may have implications for mutation interpretation and that could serve as a model for not only BRCA1 but also for other autosomal dominant disorders that are considered as being embryonically lethal.

7.
Cancer Med ; 5(5): 929-41, 2016 05.
Article in English | MEDLINE | ID: mdl-26811195

ABSTRACT

Causative germline mutations in mismatch repair (MMR) genes can only be identified in ~50% of families with a clinical diagnosis of the inherited colorectal cancer (CRC) syndrome hereditary nonpolyposis colorectal cancer (HNPCC)/Lynch syndrome (LS). Identification of these patients are critical as they are at substantially increased risk of developing multiple primary tumors, mainly colorectal and endometrial cancer (EC), occurring at a young age. This demonstrates the need to develop new and/or more thorough mutation detection approaches. Next-generation sequencing (NGS) was used to screen 22 genes involved in the DNA MMR pathway in constitutional DNA from 14 HNPCC and 12 sporadic EC patients, plus 2 positive controls. Several softwares were used for analysis and functional annotation. We identified 5 exonic indel variants, 42 exonic nonsynonymous single-nucleotide variants (SNVs) and 1 intronic variant of significance. Three of these variants were class 5 (pathogenic) or class 4 (likely pathogenic), 5 were class 3 (uncertain clinical relevance) and 40 were classified as variants of unknown clinical significance. In conclusion, we have identified two LS families from the sporadic EC patients, one without a family history of cancer, supporting the notion for universal MMR screening of EC patients. In addition, we have detected three novel class 3 variants in EC cases. We have, in addition discovered a polygenic interaction which is the most likely cause of cancer development in a HNPCC patient that could explain previous inconsistent results reported on an intronic EXO1 variant.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , DNA Mismatch Repair/genetics , Adult , Aged , DNA, Neoplasm/genetics , Early Detection of Cancer/methods , Endometrial Neoplasms/genetics , Exons/genetics , Female , Genes, Neoplasm/genetics , Genetic Predisposition to Disease , Genetic Variation/genetics , Germ-Line Mutation , High-Throughput Nucleotide Sequencing/methods , Humans , Introns/genetics , Middle Aged , Young Adult
8.
Int J Cancer ; 132(7): 1556-64, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-22987364

ABSTRACT

Two colorectal cancer (CRC) susceptibility loci have been found to be significantly associated with an increased risk of CRC in Dutch Lynch syndrome (LS) patients. Recently, in a combined study of Australian and Polish LS patients, only MLH1 mutation carriers were found to be at increased risk of disease. A combined analysis of the three data-sets was performed to better define this association. This cohort-study includes three sample populations combined totaling 1,352 individuals from 424 families with a molecular diagnosis of LS. Seven SNPs, from six different CRC susceptibility loci, were genotyped by both research groups and the data analyzed collectively. We identified associations at two of the six CRC susceptibility loci in MLH1 mutation carriers from the combined LS cohort: 11q23.1 (rs3802842, HR = 2.68, p ≤ 0.0001) increasing risk of CRC, and rs3802842 in a pair-wise combination with 8q23.3 (rs16892766) affecting age of diagnosis of CRC (log-rank test; p ≤ 0.0001). A significant difference in the age of diagnosis of CRC of 28 years was observed in individuals carrying three risk alleles compared to those with 0 risk alleles for the pair-wise SNP combination. A trend (due to significance threshold of p ≤ 0.0010) was observed in MLH1 mutation carriers towards an increased risk of CRC for the pair-wise combination (p = 0.002). This study confirms the role of modifier loci in LS. We consider that LS patients with MLH1 mutations would greatly benefit from additional genotyping of SNPs rs3802842 and rs16892766 for personalized risk assessment and a tailored surveillance program.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Chromosomes, Human, Pair 11/genetics , Chromosomes, Human, Pair 8/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms/etiology , Genetic Predisposition to Disease , Mutation/genetics , Nuclear Proteins/genetics , Cohort Studies , Colorectal Neoplasms/pathology , Colorectal Neoplasms, Hereditary Nonpolyposis/complications , Colorectal Neoplasms, Hereditary Nonpolyposis/mortality , Female , Follow-Up Studies , Genes, Modifier/genetics , Genotype , Humans , Male , Middle Aged , MutL Protein Homolog 1 , Polymorphism, Single Nucleotide/genetics , Precision Medicine , Prognosis , Risk Factors , Survival Rate
9.
J Med Genet ; 48(4): 279-84, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21097774

ABSTRACT

OBJECTIVE: Recently, six colorectal cancer (CRC) susceptibility loci have been identified, and two single-nucleotide polymorphisms (SNPs)--rs16892766 (8q23.3) and rs3802842 (11q23.1)--from two of these regions have been found to be significantly associated with an increased CRC risk in patients with Lynch syndrome. The objective of this study was to genotype nine SNPs within these six loci to confirm previous findings and investigate whether they act as modifiers of disease risk in patients with Lynch syndrome. DESIGN: The patient cohort consisted of 684 mutation-positive patients with Lynch syndrome from 298 Australian and Polish families. Nine SNPs were genotyped: rs16892766 (8q23.3), rs7014346 and rs6983267 (8q24.21), rs10795668 (10p14), rs3802842 (11q23.1), rs10318 and rs4779584 (15q13.3), and rs4939827 and rs4464148 (18q21.1). The data were analysed to investigate possible associations between the presence of variant alleles and the risk of developing disease. RESULTS: An association between SNP rs3802842 on chromosome 11q23.1 and rs16892766 on chromosome 8q23.3 and the risk of developing CRC and age of diagnosis was found in MLH1 mutation carriers. Female MLH1 mutation carriers harbouring the homozygous variant genotype for SNP rs3802842 have the highest risk of developing CRC. When the number of risk alleles for the two SNPs combined was analysed, a difference of 24 years was detected between individuals carrying three risk alleles and those carrying no risk alleles. CONCLUSION: The authors were able to replicate the association between the CRC susceptibility loci on chromosomes 8q23.3 and 11q23 and the risk of developing CRC in patients with Lynch syndrome, but the association could only be detected in MLH1 mutation carriers in this study.


Subject(s)
Chromosomes, Human, Pair 11 , Chromosomes, Human, Pair 8 , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms/genetics , Adaptor Proteins, Signal Transducing/genetics , Adult , Age of Onset , Aged , Aged, 80 and over , Cohort Studies , Colorectal Neoplasms/complications , Colorectal Neoplasms, Hereditary Nonpolyposis/complications , Female , Gene Frequency , Genetic Predisposition to Disease , Heterozygote , Humans , Kaplan-Meier Estimate , Middle Aged , MutL Protein Homolog 1 , Nuclear Proteins/genetics , Polymorphism, Single Nucleotide
10.
Hered Cancer Clin Pract ; 8(1): 5, 2010 May 21.
Article in English | MEDLINE | ID: mdl-20487569

ABSTRACT

BACKGROUND: Approximately 10% of Lynch syndrome families have a mutation in MSH6 and fewer families have a mutation in PMS2. It is assumed that the cancer incidence is the same in families with mutations in MSH6 as in families with mutations in MLH1/MSH2 but that the disease tends to occur later in life, little is known about families with PMS2 mutations. This study reports on our findings on mutation type, cancer risk and age of diagnosis in MSH6 and PMS2 families. METHODS: A total of 78 participants (from 29 families) with a mutation in MSH6 and 7 participants (from 6 families) with a mutation in PMS2 were included in the current study. A database of de-identified patient information was analysed to extract all relevant information such as mutation type, cancer incidence, age of diagnosis and cancer type in this Lynch syndrome cohort. Cumulative lifetime risk was calculated utilising Kaplan-Meier survival analysis. RESULTS: MSH6 and PMS2 mutations represent 10.3% and 1.9%, respectively, of the pathogenic mutations in our Australian Lynch syndrome families. We identified 26 different MSH6 and 4 different PMS2 mutations in the 35 families studied. We report 15 novel MSH6 and 1 novel PMS2 mutations. The estimated cumulative risk of CRC at age 70 years was 61% (similar in males and females) and 65% for endometrial cancer in MSH6 mutation carriers. The risk of developing CRC is different between males and females at age 50 years, which is 34% for males and 21% for females. CONCLUSION: Novel MSH6 and PMS2 mutations are being reported and submitted to the current databases for identified Lynch syndrome mutations. Our data provides additional information to add to the genotype-phenotype spectrum for both MSH6 and PMS2 mutations.

11.
Hered Cancer Clin Pract ; 4(2): 94-102, 2006 May 15.
Article in English | MEDLINE | ID: mdl-20223014

ABSTRACT

Catechol-O-methyltransferase (COMT) is vital for the conjugation of catechol estrogens that are produced during oestrogen metabolism. The efficiency of this process varies due to a polymorphism in COMT, which changes valine to methionine (V158M). The Met genotypes slow the metabolism of catechol oestrogens, which are agents that are capable of causing DNA damage through the formation of DNA adducts and reactive oxygen species (ROS) production. The slower metabolism of catechol oestrogens results in there being a higher circulating concentration of these oeastrogens and consequently greater probability of DNA damage. To determine whether metabolic inefficiencies of oeastrogen metabolism are associated with the development of malignancy in hereditary non-polyposis colorectal cancer (HNPCC), we studied the V158M polymorphism in COMT in a large cohort of 498 HNPCC patients from Australia and Poland that were either mutation positive (n = 331) or negative (n = 167) for mismatch repair (MMR) gene mutations (hMLH1 or hMSH2). HNPCC is a familial predisposition to colorectal cancer (CRC) and extracolonic cancers that include endometrial cancer.Using Real Time PCR, the COMT V158M polymorphism was examined and its association with disease expression, age of diagnosis of cancer, mutation status and mutation type was assessed in the HNPCC MMR mutation positive and negative groups. This study showed that the V158M polymorphism had no association with disease risk in the HNPCC MMR mutation positive population. However, the polymorphism was significantly associated with endometrial/ovarian cancer risk in HNPCC MMR mutation negative patients (p = 0.002). The heterozygous (Val/Met) genotype was associated with an increased risk of developing endometrial/ovarian cancer whereas the homozygous mutant (Met/Met) showed a decreased risk. The results suggest heterosis, where there is an apparent greater effect of the heterozygous state in this dichotomous trait. In conclusion, this study shows that the COMT V158M polymorphism alters the risk of developing endometrial/ovarian cancer in patients that adhere to the Amsterdam HNPCC criteria but do not have a DNA mismatch repair gene mutation.

12.
Hered Cancer Clin Pract ; 3(1): 43-7, 2005 Nov 15.
Article in English | MEDLINE | ID: mdl-20223028

ABSTRACT

Hereditary non polyposis colorectal cancer (HNPCC) is characterized by the presence of early onset colorectal cancer and other epithelial malignancies. The genetic basis of HNPCC is a deficiency in DNA mismatch repair, which manifests itself as DNA microsatellite instability in tumours. There are four genes involved in DNA mismatch repair that have been linked to HNPCC; these include hMSH2, hMLH1, hMSH6 and hPMS2. Of these four genes hMLH1 and hMSH2 account for the majority of families diagnosed with the disease. Notwithstanding, up to 40 percent of families do not appear to harbour a change in either hMSH2 or hMLH1 that can be detected using standard screening procedures such as direct DNA sequencing or a variety of methods all based on a heteroduplex analysis.In this report we have screened a series of 118 probands that all have the clinical diagnosis of HNPCC for medium to large deletions by the Multiplex Ligation-Dependent Probe Amplification assay (MLPA) to determine the frequency of this type of mutation. The results indicate that a significant proportion of Australian HNPCC patients harbour deletion or duplication mutations primarily in hMSH2 but also in hMLH1.

13.
Hered Cancer Clin Pract ; 3(2): 65-70, 2005 May 15.
Article in English | MEDLINE | ID: mdl-20223032

ABSTRACT

Recently mutations in the MYH gene have been associated with a milder form of adenomatous polyposis which is characterized by a variable level of colonic polyps ranging from a few to several hundred. In the context of HNPCC it is not unusual to identify patients with a smattering of polyps. The MYH gene product is involved in DNA repair and indeed the hMSH2/hMSH6 complex (both genes being essential elements of the DNA mismatch repair pathway) is required to stimulate MYH activity. We reasoned that because of the clinical similarity of a subset of HNPCC patients to those described with MYH mutations and the role of the hMSH2/hMSH6 complex in the activation of MYH protein that MYH mutations may account for a small proportion of HNPCC patients. In a study of 442 HNPCC patients we identified MYH mutations at the same frequency as that expected in the general population. Nevertheless, two HNPCC families were identified harbouring biallelic changes in MYH.

SELECTION OF CITATIONS
SEARCH DETAIL
...