Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(48): eadi3059, 2023 12.
Article in English | MEDLINE | ID: mdl-38039363

ABSTRACT

Across the Southern Ocean, large (≥20 µm) diatoms are generally assumed to be the primary vector for carbon export, although this assumption derives mainly from summertime observations. Here, we investigated carbon production and export potential during the Atlantic Southern Ocean's spring bloom from size-fractionated measurements of net primary production (NPP), nitrogen (nitrate, ammonium, urea) and iron (labile inorganic iron, organically complexed iron) uptake, and a high-resolution characterization of phytoplankton community composition. The nanoplankton-sized (2.7 to 20 µm) diatom, Chaetoceros spp., dominated the biomass, NPP, and nitrate uptake across the basin (40°S to 56°S), which we attribute to their low iron requirement, rapid response to increased light, and ability to escape grazing when aggregated into chains. We estimate that the spring Chaetoceros bloom accounted for >25% of annual export production across the Atlantic Southern Ocean, a finding consistent with recent observations from other regions highlighting the central role of the phytoplankton "middle class" in carbon export.


Subject(s)
Carbon , Diatoms , Nitrates , Phytoplankton/physiology , Diatoms/physiology , Atlantic Ocean , Iron , Oceans and Seas , Seawater
2.
Nat Commun ; 6: 6925, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25897682

ABSTRACT

Eukaryotic microalgae hold great promise for the bioproduction of fuels and higher value chemicals. However, compared with model genetic organisms such as Escherichia coli and Saccharomyces cerevisiae, characterization of the complex biology and biochemistry of algae and strain improvement has been hampered by the inefficient genetic tools. To date, many algal species are transformable only via particle bombardment, and the introduced DNA is integrated randomly into the nuclear genome. Here we describe the first nuclear episomal vector for diatoms and a plasmid delivery method via conjugation from Escherichia coli to the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. We identify a yeast-derived sequence that enables stable episome replication in these diatoms even in the absence of antibiotic selection and show that episomes are maintained as closed circles at copy number equivalent to native chromosomes. This highly efficient genetic system facilitates high-throughput functional characterization of algal genes and accelerates molecular phytoplankton research.


Subject(s)
Conjugation, Genetic , Diatoms/genetics , Escherichia coli/physiology , Plasmids , DNA/genetics , Electroporation , Genetic Vectors , Plasmids/genetics , Polyethylene Glycols , Recombination, Genetic , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
3.
PLoS One ; 8(12): e81862, 2013.
Article in English | MEDLINE | ID: mdl-24349140

ABSTRACT

Understanding the microbial content of the air has important scientific, health, and economic implications. While studies have primarily characterized the taxonomic content of air samples by sequencing the 16S or 18S ribosomal RNA gene, direct analysis of the genomic content of airborne microorganisms has not been possible due to the extremely low density of biological material in airborne environments. We developed sampling and amplification methods to enable adequate DNA recovery to allow metagenomic profiling of air samples collected from indoor and outdoor environments. Air samples were collected from a large urban building, a medical center, a house, and a pier. Analyses of metagenomic data generated from these samples reveal airborne communities with a high degree of diversity and different genera abundance profiles. The identities of many of the taxonomic groups and protein families also allows for the identification of the likely sources of the sampled airborne bacteria.


Subject(s)
Air Microbiology , Bacteria/genetics , DNA, Bacterial/genetics , Nucleic Acid Amplification Techniques , Phylogeny , RNA, Ribosomal, 16S/genetics , Bacteria/classification , Biodiversity , DNA, Bacterial/classification , Environmental Monitoring , Genes, rRNA , Metagenomics , Principal Component Analysis , RNA, Ribosomal, 16S/classification
4.
Environ Sci Technol ; 44(7): 2721-7, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20199066

ABSTRACT

Microbial fuel cell (MFC) technology has enabled new insights into the mechanisms of electron transfer from dissimilatory metal reducing bacteria to a solid phase electron acceptor. Using solid electrodes as electron acceptors enables quantitative real-time measurements of electron transfer rates to these surfaces. We describe here an optically accessible, dual anode, continuous flow MFC that enables real-time microscopic imaging of anode populations as they develop from single attached cells to a mature biofilms. We used this system to characterize how differences in external resistance affect cellular electron transfer rates on a per cell basis and overall biofilm development in Shewanella oneidensis strain MR-1. When a low external resistance (100 Omega) was used, estimates of current per cell reached a maximum of 204 fA/cell (1.3 x 10(6) e(-) cell(-1) sec(-1)), while when a higher (1 MOmega) resistance was used, only 75 fA/cell (0.4 x 10(6) e(-) cell(-1) sec(-1)) was produced. The 1 MOmega anode biomass consistently developed into a mature thick biofilm with tower morphology (>50 microm thick), whereas only a thin biofilm (<5 microm thick) was observed on the 100 Omega anode. These data suggest a link between the ability of a surface to accept electrons and biofilm structure development.


Subject(s)
Bioelectric Energy Sources , Biofilms/growth & development , Electrons , Shewanella/cytology , Shewanella/physiology , Biomass , Colony Count, Microbial , Electric Impedance , Electricity , Electrochemistry , Electrodes , Shewanella/growth & development , Shewanella/ultrastructure , Time Factors
5.
Appl Environ Microbiol ; 70(4): 2429-36, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15066841

ABSTRACT

Nitrilases are important in the biosphere as participants in synthesis and degradation pathways for naturally occurring, as well as xenobiotically derived, nitriles. Because of their inherent enantioselectivity, nitrilases are also attractive as mild, selective catalysts for setting chiral centers in fine chemical synthesis. Unfortunately, <20 nitrilases have been reported in the scientific and patent literature, and because of stability or specificity shortcomings, their utility has been largely unrealized. In this study, 137 unique nitrilases, discovered from screening of >600 biotope-specific environmental DNA (eDNA) libraries, were characterized. Using culture-independent means, phylogenetically diverse genomes were captured from entire biotopes, and their genes were expressed heterologously in a common cloning host. Nitrilase genes were targeted in a selection-based expression assay of clonal populations numbering 10(6) to 10(10) members per eDNA library. A phylogenetic analysis of the novel sequences discovered revealed the presence of at least five major sequence clades within the nitrilase subfamily. Using three nitrile substrates targeted for their potential in chiral pharmaceutical synthesis, the enzymes were characterized for substrate specificity and stereospecificity. A number of important correlations were found between sequence clades and the selective properties of these nitrilases. These enzymes, discovered using a high-throughput, culture-independent method, provide a catalytic toolbox for enantiospecific synthesis of a variety of carboxylic acid derivatives, as well as an intriguing library for evolutionary and structural analyses.


Subject(s)
Aminohydrolases/genetics , Aminohydrolases/metabolism , Catalysis , Environmental Microbiology , Gene Library , Molecular Sequence Data , Nitriles/chemistry , Nitriles/metabolism , Phylogeny , Stereoisomerism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...