Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 78(18): 6423-32, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22773625

ABSTRACT

Water quality was assessed at two marine beaches in California by measuring the concentrations of culturable fecal indicator bacteria (FIB) and by library-independent microbial source tracking (MST) methods targeting markers of human-associated microbes (human polyomavirus [HPyV] PCR and quantitative PCR, Methanobrevibacter smithii PCR, and Bacteroides sp. strain HF183 PCR) and a human pathogen (adenovirus by nested PCR). FIB levels periodically exceeded regulatory thresholds at Doheny and Avalon Beaches for enterococci (28.5% and 31.7% of samples, respectively) and fecal coliforms (20% and 5.8%, respectively). Adenoviruses were detected at four of five sites at Doheny Beach and were correlated with detection of HPyVs and human Bacteroides HF183; however, adenoviruses were not detected at Avalon Beach. The most frequently detected human source marker at both beaches was Bacteroides HF183, which was detected in 27% of samples. Correlations between FIBs and human markers were much more frequent at Doheny Beach than at Avalon Beach; e.g., adenovirus was correlated with HPyVs and HF183. Human sewage markers and adenoviruses were routinely detected in samples meeting FIB regulatory standards. The toolbox approach of FIB measurement coupled with analysis of several MST markers targeting human pathogens used here demonstrated that human sewage is at least partly responsible for the degradation of water quality, particularly at Doheny Beach, and resulted in a more definitive assessment of recreational water quality and human health risk than reliance on FIB concentrations alone could have provided.


Subject(s)
Bacteroides/isolation & purification , Bathing Beaches , Polyomavirus/isolation & purification , Seawater/microbiology , Seawater/virology , Water Pollution , Bacteroides/genetics , California , Enterobacteriaceae/isolation & purification , Humans , Methanobrevibacter/genetics , Methanobrevibacter/isolation & purification , Polymerase Chain Reaction , Polyomavirus/genetics , Risk Assessment , Statistics as Topic , Water Quality
2.
J Water Health ; 9(3): 443-57, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21976192

ABSTRACT

Studies evaluating the relationship between microbes and human health at non-point source beaches are necessary for establishing criteria which would protect public health while minimizing economic burdens. The objective of this study was to evaluate water quality and daily cumulative health effects (gastrointestinal, skin, and respiratory illnesses) for bathers at a non-point source subtropical marine recreational beach in order to better understand the inter-relationships between these factors and hence improve monitoring and pollution prevention techniques. Daily composite samples were collected, during the Oceans and Human Health Beach Exposure Assessment and Characterization Health Epidemiologic Study conducted in Miami (Florida, USA) at a non-point source beach, and analyzed for several pathogens, microbial source tracking markers, indicator microbes, and environmental parameters. Analysis demonstrated that rainfall and tide were more influential, when compared to other environmental factors and source tracking markers, in determining the presence of both indicator microbes and pathogens. Antecedent rainfall and F+ coliphage detection in water should be further assessed to confirm their possible association with skin and gastrointestinal (GI) illness outcomes, respectively. The results of this research illustrate the potential complexity of beach systems characterized by non-point sources, and how more novel and comprehensive approaches are needed to assess beach water quality for the purpose of protecting bather health.


Subject(s)
Bathing Beaches , Gastrointestinal Diseases/microbiology , Respiratory Tract Infections/microbiology , Seawater/microbiology , Water Microbiology , Coliphages/isolation & purification , Enterococcus/isolation & purification , Enterovirus/isolation & purification , Environmental Exposure/adverse effects , Environmental Monitoring/methods , Epidemiological Monitoring , Florida/epidemiology , Gastrointestinal Diseases/epidemiology , Humans , Rain , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/transmission
3.
Appl Environ Microbiol ; 76(3): 724-32, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19966020

ABSTRACT

Swimming in ocean water, including ocean water at beaches not impacted by known point sources of pollution, is an increasing health concern. This study was an initial evaluation of the presence of indicator microbes and pathogens and the association among the indicator microbes, pathogens, and environmental conditions at a subtropical, recreational marine beach in south Florida impacted by non-point sources of pollution. Twelve water and eight sand samples were collected during four sampling events at high or low tide under elevated or reduced solar insolation conditions. The analyses performed included analyses of fecal indicator bacteria (FIB) (fecal coliforms, Escherichia coli, enterococci, and Clostridium perfringens), human-associated microbial source tracking (MST) markers (human polyomaviruses [HPyVs] and Enterococcus faecium esp gene), and pathogens (Vibrio vulnificus, Staphylococcus aureus, enterovirus, norovirus, hepatitis A virus, Cryptosporidium spp., and Giardia spp.). The enterococcus concentrations in water and sand determined by quantitative PCR were greater than the concentrations determined by membrane filtration measurement. The FIB concentrations in water were below the recreational water quality standards for three of the four sampling events, when pathogens and MST markers were also generally undetectable. The FIB levels exceeded regulatory guidelines during one event, and this was accompanied by detection of HPyVs and pathogens, including detection of the autochthonous bacterium V. vulnificus in sand and water, detection of the allochthonous protozoans Giardia spp. in water, and detection of Cryptosporidium spp. in sand samples. The elevated microbial levels were detected at high tide and under low-solar-insolation conditions. Additional sampling should be conducted to further explore the relationships between tidal and solar insolation conditions and between indicator microbes and pathogens in subtropical recreational marine waters impacted by non-point source pollution.


Subject(s)
Bacteria/isolation & purification , Bathing Beaches , Parasites/isolation & purification , Seawater/microbiology , Viruses/isolation & purification , Water Microbiology , Animals , Bathing Beaches/standards , Clostridium perfringens/isolation & purification , Cryptosporidium/isolation & purification , Enterococcus/isolation & purification , Enterococcus faecium/isolation & purification , Environmental Monitoring , Environmental Pollutants/isolation & purification , Escherichia coli/isolation & purification , Florida , Fresh Water/microbiology , Humans , Polyomavirus/isolation & purification , Recreation , Seawater/parasitology , Seawater/virology , Silicon Dioxide , Viruses/genetics , Water Supply
4.
Appl Environ Microbiol ; 75(11): 3379-88, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19346361

ABSTRACT

In the United States, total maximum daily load standards for bodies of water that do not meet bacterial water quality standards are set by each state. The presence of human polyomaviruses (HPyVs) can be used as an indicator of human-associated sewage pollution in these waters. We have developed and optimized a TaqMan quantitative PCR (QPCR) assay based on the conserved T antigen to both quantify and simultaneously detect two HPyVs; JC virus and BK virus. The QPCR assay was able to consistently quantify > or =10 gene copies per reaction and is linear over 5 orders of magnitude. HPyVs were consistently detected in human waste samples (57 of 64) and environmental waters with known human fecal contamination (5 of 5) and were not amplified in DNA extracted from 127 animal waste samples from 14 species. HPyV concentrations in sewage decreased 81.2 and 84.2% over 28 days incubation at 25 and 35 degrees C, respectively. HPyVs results were compared to Escherichia coli, fecal coliform, and enterococci concentrations and the presence of three other human-associated microbes: Bacteroidetes, Methanobrevibacter smithii, and adenovirus. HPyVs were the most frequently detected of these in human and contaminated environmental samples and were more human specific than the Bacteroidetes (HF183) or M. smithii. HPyVs and M. smithii more closely mimicked the persistence of adenovirus in sewage than the other microbes. The use of this rapid and quantitative assay in water quality research could help regulatory agencies to identify sources of water pollution for improved remediation of contaminated waters and ultimately protect humans from exposure to pathogens.


Subject(s)
BK Virus/isolation & purification , Feces/virology , JC Virus/isolation & purification , Polymerase Chain Reaction/methods , Water Microbiology , Antigens, Polyomavirus Transforming/genetics , BK Virus/genetics , Bacteroidetes/isolation & purification , Colony Count, Microbial , Conserved Sequence , DNA, Viral/chemistry , DNA, Viral/genetics , Enterococcus/isolation & purification , Escherichia coli/isolation & purification , JC Virus/genetics , Methanobrevibacter/isolation & purification , Molecular Sequence Data , Sequence Analysis, DNA , Sewage/virology , United States
5.
Appl Environ Microbiol ; 72(12): 7567-74, 2006 Dec.
Article in English | MEDLINE | ID: mdl-16997988

ABSTRACT

Regulatory agencies mandate the use of fecal coliforms, Escherichia coli or Enterococcus spp., as microbial indicators of recreational water quality. These indicators of fecal pollution do not identify the specific sources of pollution and at times underestimate health risks associated with recreational water use. This study proposes the use of human polyomaviruses (HPyVs), which are widespread among human populations, as indicators of human fecal pollution. A method was developed to concentrate and extract HPyV DNA from environmental water samples and then to amplify it by nested PCR. HPyVs were detected in as little as 1 microl of sewage and were not amplified from dairy cow or pig wastes. Environmental water samples were screened for the presence of HPyVs and two additional markers of human fecal pollution: the Enterococcus faecium esp gene and the 16S rRNA gene of human-associated Bacteroides. The presence of human-specific indicators of fecal pollution was compared to fecal coliform and Enterococcus concentrations. HPyVs were detected in 19 of 20 (95%) samples containing the E. faecium esp gene and Bacteroides human markers. Weak or no correlation was observed between the presence/absence of human-associated indicators and counts of indicator bacteria. The sensitivity, specificity, and correlation with other human-associated markers suggest that the HPyV assay could be a useful predictor of human fecal pollution in environmental waters and an important component of the microbial-source-tracking "toolbox."


Subject(s)
Feces/virology , Polymerase Chain Reaction/methods , Polyomavirus/isolation & purification , Water Pollution/analysis , Animals , Bacteroides/genetics , Bacteroides/isolation & purification , Cattle , DNA, Viral/analysis , DNA, Viral/chemistry , DNA, Viral/isolation & purification , Enterobacteriaceae/genetics , Enterobacteriaceae/isolation & purification , Enterococcus/genetics , Enterococcus/isolation & purification , Feces/microbiology , Fresh Water/microbiology , Fresh Water/virology , Humans , Indicators and Reagents , Logistic Models , Polyomavirus/genetics , Sensitivity and Specificity , Sewage/microbiology , Sewage/virology , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...