Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 344: 123322, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38211875

ABSTRACT

Marine vibrators are a new technology being developed for seismic surveys. These devices can transmit continuous instead of impulsive sound and operate over a narrower frequency band and at lower peak pressure than airguns, which is assumed to reduce their environmental impacts. We exposed spawning Atlantic cod (Gadus morhua) to sound produced by a prototype, but full-scale, marine vibrator, and monitored behavioural responses of tagged cod using acoustic telemetry. Fish were exposed to 10 × 3 h continuous sound treatments over a 4-day period using a randomised-block design. Sound exposure levels were comparable to airgun exposure experiments conducted previously with the same set-up ranging from ∼115 to 145 dB re 1 µPa2s during exposure. Telemetry data were used to assess 1) whether marine vibrator exposure displaced cod from the spawning ground, through estimation of residence and survival probabilities, and 2) fine-scale behavioural responses within the test site, namely swimming depth, activity levels, displacement, and home ranges. Forty-two spawning cod were tagged prior to the exposure, with 22 present during the exposure. All 22 tags were equipped with pressure sensors and ten of these additionally with accelerometers. While no premature departure from the spawning site was observed, cod reacted to the exposure by decreasing their activity levels (by up to 50%, SE = 7%) and increasing their swimming depth (by up to 2.5 m, SE = 1.0 m) within the test site during the exposure period. These behavioural responses varied by sex and time of day. Cod reactions to a marine vibrator may be more pronounced than reactions to airguns, possibly because continuous sound is more disturbing to fish than intermittent sound at the same exposure levels. However, given sample size limitations of the present study, further studies with continuous sound are necessary to fully understand its impact and biological significance.


Subject(s)
Gadus morhua , Animals , Acoustics , Environment , Fishes , Gadus morhua/physiology , Sound , Behavior, Animal
2.
J Fish Biol ; 95(6): 1486-1495, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31631337

ABSTRACT

An aggregated sample of 925 Atlantic cod Gadus morhua collected by four countries in different regions of the Baltic Sea during different seasons were measured (total length, LT = 161-890 mm and weighed (mass, M = 45-6900 g) both before freezing and after defrosting. The cod were found to decrease significantly in both LT and M following death and frozen storage. There was an average (±SD) change in LT of -2.91% (±0.05%) following freezing, independent of starting LT . Total M changed by -2.65% (±0.14%), independent of starting mass. Shrinkage of LT and M did not differ significantly between 1 and 4 months frozen storage, though LT shrinkage was significantly greater after 1 or 4 months in the freezer compared with after 5 days. There was significant variation in LT and M shrinkage between regions of capture. A significant negative relationship between condition of cod and LT or M change was also observed. Equations to back-calculate fresh LT and M from thawed LT , M and standard length (LS ), gutted LT , gutted LS and gutted M are provided.


Subject(s)
Body Size , Freezing , Gadus morhua/anatomy & histology , Animals , Baltic States , Oceans and Seas
SELECTION OF CITATIONS
SEARCH DETAIL
...