Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Lett Appl Microbiol ; 72(4): 382-389, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33175415

ABSTRACT

The bacterium Escherichia coli is commonly associated with the presence of faecal contamination in environmental samples, and is therefore subject to statutory surveillance. This is normally done using a culture-based methodology, which can be slow and laborious. Nucleic acid amplification for the detection of E. coli DNA sequences is a significantly more rapid approach, suited for applications in the field such as a point of sample analysis, and to provide an early warning of contamination. An existing, high integrity qPCR method to detect the E. coli ybbW gene, which requires almost an hour to detect low quantities of the target, was compared with a novel, isothermal RPA method, targeting the same sequence but achieving the result within a few minutes. The RPA technique demonstrated equivalent inclusivity and selectivity, and was able to detect DNA extracted from 100% of 99 E. coli strains, and exclude 100% of 30 non-target bacterial species. The limit of detection of the RPA assay was at least 100 target sequence copies. The high speed and simple, isothermal amplification chemistry may indicate that RPA is a more suitable methodology for on-site E. coli monitoring than an existing qPCR technique.


Subject(s)
Bacterial Load/methods , Escherichia coli/genetics , Escherichia coli/isolation & purification , Nucleic Acid Amplification Techniques/methods , DNA Primers/genetics , DNA, Bacterial/genetics , Feces/microbiology , Real-Time Polymerase Chain Reaction/methods , Recombinases/metabolism
2.
Lett Appl Microbiol ; 63(6): 393-399, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27653231

ABSTRACT

Biofouling is a process of ecological succession which begins with the attachment and colonization of micro-organisms to a submerged surface. For marine sensors and their housings, biofouling can be one of the principle limitations to long-term deployment and reliability. Conventional antibiofouling strategies using biocides can be hazardous to the environment, and therefore alternative chemical-free methods are preferred. In this study, custom-made testing assemblies were used to evaluate ultrasonic vibration as an antibiofouling process for marine sensor-housing materials over a 28-day time course. Microbial biofouling was measured based on (i) surface coverage, using fluorescence microscopy and (ii) bacterial 16S rDNA gene copies, using Quantitative polymerase chain reaction (PCR). Ultrasonic vibrations (20 KHz, 200 ms pulses at 2-s intervals; total power 16·08 W) significantly reduced the surface coverage on two plastics, poly(methyl methacrylate) and polyvinyl chloride (PVC) for up to 28 days. Bacterial gene copy number was similarly reduced, but the results were only statistically significant for PVC, which displayed the greatest overall resistance to biofouling, regardless of whether ultrasonic vibration was applied. Copper sheet, which has intrinsic biocidal properties was resistant to biofouling during the early stages of the experiment, but inhibited measurements made by PCR and generated inconsistent results later on. SIGNIFICANCE AND IMPACT OF THE STUDY: In this study, ultrasonic acoustic vibration is presented as a chemical-free, ecologically friendly alternative to conventional methods for the perturbation of microbial attachment to submerged surfaces. The results indicate the potential of an ultrasonic antibiofouling method for the disruption of microbial biofilms on marine sensor housings, which is typically a principle limiting factor in their long-term operation in the oceans. With increasing deployment of scientific apparatus in aquatic environments, including further offshore and for longer duration, the identification and evaluation of novel antifouling strategies that do not employ hazardous chemicals are widely sought.


Subject(s)
Aquatic Organisms/radiation effects , Bacteria/radiation effects , Biofilms/radiation effects , Biofouling/statistics & numerical data , Marine Biology/instrumentation , Ultrasonics/methods , Aquatic Organisms/growth & development , Bacteria/growth & development , Ultrasonics/instrumentation , Vibration
3.
J Microbiol Methods ; 123: 87-93, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26892386

ABSTRACT

Direct measurement and sampling of pristine environments, such as subglacial lakes, without introducing contaminating microorganisms and biomolecules from the surface, represents a significant engineering and microbiological challenge. In this study, we compare methods for decontamination of titanium grade 5 surfaces, the material extensively used to construct a custom-made probe for reaching, measuring and sampling subglacial Lake Ellsworth in West Antarctica. Coupons of titanium were artificially contaminated with Pseudomonas fluorescens bacteria and then exposed to a number of decontamination procedures. The most effective sterilants were (i) hydrogen peroxide vapour, and (ii) Biocleanse™, a commercially available, detergent-based biocidal solution. After each decontamination procedure the bacteria were incapable of proliferation, and showed no evidence of metabolic activity based on the generation of adenosine triphosphate (ATP). The use of ultraviolet irradiation or ethyl alcohol solution was comparatively ineffective for sterilisation. Hydrogen peroxide vapour and ultraviolet irradiation, which directly damage nucleic acids, were the most effective methods for removing detectable DNA, which was measured using 16S rRNA gene copy number and fluorescence-based total DNA quantification. Our results have not only been used to tailor the Ellsworth probe decontamination process, but also hold value for subsequent engineering projects, where high standards of decontamination are required.


Subject(s)
Bacteria/drug effects , Bacteria/radiation effects , Decontamination/methods , Hydrogen Peroxide/pharmacology , Lakes/microbiology , Antarctic Regions , Bacteria/genetics , Bacteria/growth & development , Decontamination/instrumentation , Lakes/chemistry , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...