Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 1594, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383513

ABSTRACT

Measuring the phenotypic effect of treatments on cells through imaging assays is an efficient and powerful way of studying cell biology, and requires computational methods for transforming images into quantitative data. Here, we present an improved strategy for learning representations of treatment effects from high-throughput imaging, following a causal interpretation. We use weakly supervised learning for modeling associations between images and treatments, and show that it encodes both confounding factors and phenotypic features in the learned representation. To facilitate their separation, we constructed a large training dataset with images from five different studies to maximize experimental diversity, following insights from our causal analysis. Training a model with this dataset successfully improves downstream performance, and produces a reusable convolutional network for image-based profiling, which we call Cell Painting CNN. We evaluated our strategy on three publicly available Cell Painting datasets, and observed that the Cell Painting CNN improves performance in downstream analysis up to 30% with respect to classical features, while also being more computationally efficient.


Subject(s)
Neural Networks, Computer
2.
Nat Protoc ; 16(7): 3572-3595, 2021 07.
Article in English | MEDLINE | ID: mdl-34145434

ABSTRACT

Deep learning offers the potential to extract more than meets the eye from images captured by imaging flow cytometry. This protocol describes the application of deep learning to single-cell images to perform supervised cell classification and weakly supervised learning, using example data from an experiment exploring red blood cell morphology. We describe how to acquire and transform suitable input data as well as the steps required for deep learning training and inference using an open-source web-based application. All steps of the protocol are provided as open-source Python as well as MATLAB runtime scripts, through both command-line and graphic user interfaces. The protocol enables a flexible and friendly environment for morphological phenotyping using supervised and weakly supervised learning and the subsequent exploration of the deep learning features using multi-dimensional visualization tools. The protocol requires 40 h when training from scratch and 1 h when using a pre-trained model.


Subject(s)
Deep Learning , Image Cytometry/methods , Supervised Machine Learning , Software , User-Computer Interface
3.
Proc Natl Acad Sci U S A ; 117(35): 21381-21390, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32839303

ABSTRACT

Stored red blood cells (RBCs) are needed for life-saving blood transfusions, but they undergo continuous degradation. RBC storage lesions are often assessed by microscopic examination or biochemical and biophysical assays, which are complex, time-consuming, and destructive to fragile cells. Here we demonstrate the use of label-free imaging flow cytometry and deep learning to characterize RBC lesions. Using brightfield images, a trained neural network achieved 76.7% agreement with experts in classifying seven clinically relevant RBC morphologies associated with storage lesions, comparable to 82.5% agreement between different experts. Given that human observation and classification may not optimally discern RBC quality, we went further and eliminated subjective human annotation in the training step by training a weakly supervised neural network using only storage duration times. The feature space extracted by this network revealed a chronological progression of morphological changes that better predicted blood quality, as measured by physiological hemolytic assay readouts, than the conventional expert-assessed morphology classification system. With further training and clinical testing across multiple sites, protocols, and instruments, deep learning and label-free imaging flow cytometry might be used to routinely and objectively assess RBC storage lesions. This would automate a complex protocol, minimize laboratory sample handling and preparation, and reduce the impact of procedural errors and discrepancies between facilities and blood donors. The chronology-based machine-learning approach may also improve upon humans' assessment of morphological changes in other biomedically important progressions, such as differentiation and metastasis.


Subject(s)
Blood Banks , Deep Learning , Erythrocytes/cytology , Humans
4.
Cytometry A ; 97(4): 407-414, 2020 04.
Article in English | MEDLINE | ID: mdl-32091180

ABSTRACT

Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. While there are a number of well-recognized prognostic biomarkers at diagnosis, the most powerful independent prognostic factor is the response of the leukemia to induction chemotherapy (Campana and Pui: Blood 129 (2017) 1913-1918). Given the potential for machine learning to improve precision medicine, we tested its capacity to monitor disease in children undergoing ALL treatment. Diagnostic and on-treatment bone marrow samples were labeled with an ALL-discriminating antibody combination and analyzed by imaging flow cytometry. Ignoring the fluorescent markers and using only features extracted from bright-field and dark-field cell images, a deep learning model was able to identify ALL cells at an accuracy of >88%. This antibody-free, single cell method is cheap, quick, and could be adapted to a simple, laser-free cytometer to allow automated, point-of-care testing to detect slow early responders. Adaptation to other types of leukemia is feasible, which would revolutionize residual disease monitoring. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.


Subject(s)
Leukemia , Machine Learning , Child , Computers , Flow Cytometry , Humans , Leukemia/diagnosis , Neoplasm, Residual
5.
Nat Methods ; 17(2): 241, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31969730

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Nat Methods ; 16(12): 1247-1253, 2019 12.
Article in English | MEDLINE | ID: mdl-31636459

ABSTRACT

Segmenting the nuclei of cells in microscopy images is often the first step in the quantitative analysis of imaging data for biological and biomedical applications. Many bioimage analysis tools can segment nuclei in images but need to be selected and configured for every experiment. The 2018 Data Science Bowl attracted 3,891 teams worldwide to make the first attempt to build a segmentation method that could be applied to any two-dimensional light microscopy image of stained nuclei across experiments, with no human interaction. Top participants in the challenge succeeded in this task, developing deep-learning-based models that identified cell nuclei across many image types and experimental conditions without the need to manually adjust segmentation parameters. This represents an important step toward configuration-free bioimage analysis software tools.


Subject(s)
Cell Nucleus/ultrastructure , Image Processing, Computer-Assisted/methods , Data Science , Humans , Microscopy, Fluorescence/methods
7.
Cytometry A ; 95(9): 952-965, 2019 09.
Article in English | MEDLINE | ID: mdl-31313519

ABSTRACT

Identifying nuclei is often a critical first step in analyzing microscopy images of cells and classical image processing algorithms are most commonly used for this task. Recent developments in deep learning can yield superior accuracy, but typical evaluation metrics for nucleus segmentation do not satisfactorily capture error modes that are relevant in cellular images. We present an evaluation framework to measure accuracy, types of errors, and computational efficiency; and use it to compare deep learning strategies and classical approaches. We publicly release a set of 23,165 manually annotated nuclei and source code to reproduce experiments and run the proposed evaluation methodology. Our evaluation framework shows that deep learning improves accuracy and can reduce the number of biologically relevant errors by half. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.


Subject(s)
Cell Nucleus , Image Processing, Computer-Assisted/methods , Microscopy, Fluorescence/methods , Cell Line , Data Accuracy , Deep Learning , Fluorescence , Humans , Image Cytometry/methods
8.
PLoS Biol ; 16(7): e2005970, 2018 07.
Article in English | MEDLINE | ID: mdl-29969450

ABSTRACT

CellProfiler has enabled the scientific research community to create flexible, modular image analysis pipelines since its release in 2005. Here, we describe CellProfiler 3.0, a new version of the software supporting both whole-volume and plane-wise analysis of three-dimensional (3D) image stacks, increasingly common in biomedical research. CellProfiler's infrastructure is greatly improved, and we provide a protocol for cloud-based, large-scale image processing. New plugins enable running pretrained deep learning models on images. Designed by and for biologists, CellProfiler equips researchers with powerful computational tools via a well-documented user interface, empowering biologists in all fields to create quantitative, reproducible image analysis workflows.


Subject(s)
Image Processing, Computer-Assisted , Software , Animals , Cell Nucleus/metabolism , DNA/metabolism , Deep Learning , Humans , Imaging, Three-Dimensional , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism
9.
Article in English | MEDLINE | ID: mdl-30918435

ABSTRACT

We study the problem of learning representations for single cells in microscopy images to discover biological relationships between their experimental conditions. Many new applications in drug discovery and functional genomics require capturing the morphology of individual cells as comprehensively as possible. Deep convolutional neural networks (CNNs) can learn powerful visual representations, but require ground truth for training; this is rarely available in biomedical profiling experiments. While we do not know which experimental treatments produce cells that look alike, we do know that cells exposed to the same experimental treatment should generally look similar. Thus, we explore training CNNs using a weakly supervised approach that uses this information for feature learning. In addition, the training stage is regularized to control for unwanted variations using mixup or RNNs. We conduct experiments on two different datasets; the proposed approach yields single-cell embeddings that are more accurate than the widely adopted classical features, and are competitive with previously proposed transfer learning approaches.

SELECTION OF CITATIONS
SEARCH DETAIL
...