Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 173(Pt B): 113096, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34744013

ABSTRACT

Decades after a ban on hunting, and despite focused management interventions, the endangered St. Lawrence Estuary (SLE) beluga (Delphinapterus leucas) population has failed to recover. We applied a population viability analysis to simulate the responses of the SLE beluga population across a wide range of variability and uncertainty under current and projected changes in environmental and climate-mediated conditions. Three proximate threats to recovery were explored: ocean noise; contaminants; and prey limitation. Even the most optimistic scenarios failed to achieve the reliable positive population growth needed to meet current recovery targets. Here we show that predicted effects of climate change may be a more significant driver of SLE beluga population dynamics than the proximate threats we considered. Aggressive mitigation of all three proximate threats will be needed to build the population's resilience and allow the population to persist long enough for global actions to mitigate climate change to take effect.


Subject(s)
Beluga Whale , Climate Change , Conservation of Natural Resources , Estuaries , Animals , Endangered Species , Hunting
2.
Mar Pollut Bull ; 173(Pt A): 112977, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34583251

ABSTRACT

Vessel underwater noise (VUN) is one of the main threats to the recovery of the endangered St. Lawrence Estuary Beluga population (SLEB). The 1% yearly population decline indicates that the cumulative threats are already beyond sustainable limits for the SLEB. However, a potential threefold increase in shipping traffic is expected within its critical habitat in the coming years resulting from proposed port-industrial projects in the Saguenay River. Current data indicate that SLEB typically use multiple sectors within their summer range, likely leading to differential VUN exposure among individuals. The degree of displacement and spatial mixing among habitats are not yet well understood but can be simulated under different assumptions about movement patterns at the individual and population levels. Here, we propose using an agent-based model (ABM) to explore the biases introduced when estimating exposure to stressors such as VUN, where individual-centric movement patterns and habitat use are derived from different spatial behaviour assumptions. Simulations of the ABM revealed that alternative behavioural assumptions for individual belugas can significantly alter the estimation of instantaneous and cumulative exposure of SLEB to VUN. Our simulations also predicted that with the projected traffic increase in the Saguenay River, the characteristics making it a quiet zone for SLEB within its critical habitat would be nullified. Whereas spending more time in the Saguenay than in the Estuary allows belugas to be exposed to less noise under the current traffic regime, this relationship is reversed under the increased traffic scenario. Considering the importance of the Saguenay for SLEB females and calves, our results support the need to understand its role as a possible acoustic refuge for this endangered population. This underlines the need to understand and describe individual and collective beluga behaviours using the best available data to conduct a thorough acoustic impact assessment concerning future increased traffic.


Subject(s)
Gelatin , Ships , Animals , Cattle , Estuaries , Female , Humans , Systems Analysis
3.
J Acoust Soc Am ; 130(6): 3661-73, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22225023

ABSTRACT

The threatened resident beluga population of the St. Lawrence Estuary shares the Saguenay-St. Lawrence Marine Park with significant anthropogenic noise sources, including marine commercial traffic and a well-established, vessel-based whale-watching industry. Frequency-dependent (FD) weighting was used to approximate beluga hearing sensitivity to determine how noise exposure varied in time and space at six sites of high beluga summer residency. The relative contribution of each source to acoustic habitat degradation was estimated by measuring noise levels throughout the summer and noise signatures of typical vessel classes with respect to traffic volume and sound propagation characteristics. Rigid-hulled inflatable boats were the dominant noise source with respect to estimated beluga hearing sensitivity in the studied habitats due to their high occurrence and proximity, high correlation with site-specific FD-weighted sound levels, and the dominance of mid-frequencies (0.3-23 kHz) in their noise signatures. Median C-weighted sound pressure level (SPL(RMS)) had a range of 19 dB re 1 µPa between the noisiest and quietest sites. Broadband SPL(RMS) exceeded 120 dB re 1 µPa 8-32% of the time depending on the site. Impacts of these noise levels on St. Lawrence beluga will depend on exposure recurrence and individual responsiveness.


Subject(s)
Beluga Whale/physiology , Noise, Transportation , Ships , Animals , Quebec , Seasons , Sound Spectrography
SELECTION OF CITATIONS
SEARCH DETAIL
...