Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Breed Genet ; 132(2): 109-20, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25823837

ABSTRACT

In breeding forest trees, as for livestock, the goal is to capture as much genetic gain as possible for the breeding objective, while limiting long- and short-term inbreeding. The Southern Tree Breeding Association (STBA) is responsible for breeding Australia's two main commercial forest tree species and has adopted algorithms and methods commonly used in animal breeding to achieve this balance. Discrete generation breeding is the norm for most tree breeding programmes. However, the STBA uses an overlapping generation strategy, with a new stream of breeding initiated each year. A feature of the species bred by the STBA (Pinus radiata and Eucalyptus globulus) is the long interval (up to 7 years) between when an individual is mated and when its progeny is first assessed in field trials and performance data included in the national performance database. Mate selection methods must therefore recognize the large pool of unmeasured progeny generated over recent years of crossing. In addition, the substantial delay between when an individual is selected in a field trial and when it is clonally copied into a mating facility (breeding arboretum) means that selection and mating must occur as a two-step process. In this article, we describe modifications to preselection and mate selection algorithms that allow unmeasured progeny (juveniles) to be recognized. We also demonstrate that the addition of hypothetical new progeny to the juvenile pool is important for computing the increase in average co-ancestry in the population. Methods outlined in this article may have relevance to animal breeding programmes where between mating and progeny measurement, new rounds of mating are initiated.


Subject(s)
Breeding , Eucalyptus , Pinus , Animals , Conservation of Natural Resources , Eucalyptus/genetics , Pinus/genetics , Trees/classification , Trees/genetics , Trees/growth & development
2.
Am J Pathol ; 138(2): 359-71, 1991 Feb.
Article in English | MEDLINE | ID: mdl-1992763

ABSTRACT

Acetaminophen overdose causes severe hepatotoxicity in humans and laboratory animals, presumably by metabolism to N-acetyl-p-benzoquinone imine: and binding to cysteine groups as 3-(cystein-S-yl)acetaminophen-protein adduct. Antiserum specific for the adduct was used immunohistochemically to demonstrate the formation, distribution, and concentration of this specific adduct in livers of treated mice and was correlated with cell injury as a function of dose and time. Within the liver lobule, immunohistochemically demonstrable adduct occurred in a temporally progressive, central-to-peripheral pattern. There was concordance between immunohistochemical staining and quantification of the adduct in hepatic 10,000g supernate, using a quantitative particle concentration fluorescence immunoassay. Findings include: 1) immunochemically detectable adduct before the appearance of centrilobular necrosis, 2) distinctive lobular zones of adduct localization with subsequent depletion during the progression of toxicity, 3) drug-protein binding in hepatocytes at subhepatotoxic doses and before depletion of total hepatic glutathione, 4) immunohistochemical evidence of drug binding in the nucleus, and 5) adduct in metabolically active and dividing hepatocytes and in macrophagelike cells in the regenerating liver.


Subject(s)
Acetaminophen/analogs & derivatives , Acetaminophen/toxicity , Liver/drug effects , Acetaminophen/metabolism , Animals , Dose-Response Relationship, Drug , Immunohistochemistry , Liver/metabolism , Liver/pathology , Male , Mice , Time Factors , Tissue Distribution
3.
Toxicol Appl Pharmacol ; 105(3): 503-7, 1990 Sep 15.
Article in English | MEDLINE | ID: mdl-2237922

ABSTRACT

Administration of [ring-U-14C]propanil (3,4-dichloropropionanilide) to male Sprague-Dawley rats (30, 100, and 300 mg/kg, ip) increased the formation of methemoglobin at the two highest doses. Following a propanil dose of 100 mg/kg, methemoglobin formation attained a maximum level of 5% by 1.5 hr and declined to normal levels (approximately 2.5%) by 12 hr. Hemoglobin binding attained a maximum level of 50 pmol/mg protein by 12 hr, and remained constant for 24 hr. Following a propanil dose of 300 mg/kg, methemoglobin formation attained a maximum level of 24% by 4.5 hr, and declined to a level of 5% by 24 hr. Hemoglobin binding attained a maximum level of 425 pmol/mg protein by 12 hr, and remained constant for 24 hr. Hemoglobin binding was also detected at the lowest propanil dose (10 pmol/mg protein) even though methemoglobin formation was not observed. HPLC analysis of alkaline-treated hemoglobin from propanil-treated rats indicated the presence of one radiolabeled compound with the same HPLC retention time as 3,4-dichloraniline. These data are consistent with the concept that propanil is converted to N-hydroxy-3,4-dichloroaniline in the liver. Subsequently, this metabolite enters the erythrocyte and is oxidized by hemoglobin to 3,4-dichloronitrosobenzene with concomitant conversion of oxyhemoglobin to methemoglobin. The 3,4-dichloronitrosobenzene binds to cysteine residues on hemoglobin as the corresponding sulfinic acid amide adduct. These data suggest that human exposure to propanil may be monitored in the absence of observable toxicity by the analysis of propanil metabolites bound to hemoglobin.


Subject(s)
Hemoglobins/metabolism , Methemoglobinemia/chemically induced , Propanil/toxicity , Animals , Carbon Radioisotopes , Male , Methemoglobin/biosynthesis , Methemoglobinemia/metabolism , Propanil/metabolism , Protein Binding , Rats , Rats, Inbred Strains , Time Factors
4.
J Chromatogr ; 474(1): 245-56, 1989 Jul 14.
Article in English | MEDLINE | ID: mdl-2768396

ABSTRACT

On-line formation and detection of glutathione and cysteine conjugates of acetaminophen were accomplished by the interfacing of a coulometric electrochemical cell with a thermospray mass spectrometer in a flow-injection experiment using a liquid chromatographic pump. Formation of the conjugates occurred only after acetaminophen was oxidized electrochemically by a two-electron transfer to N-acetyl-p-benzoquinoneimine and reacted in a mixing tee with either glutathione or cysteine. The newly formed conjugate was detected by thermospray mass spectrometry by observing the [M + H]+ ion for the acetaminophen-glutathione conjugate at m/z 457, or the [M + H]+ ion for the acetaminophen cysteine conjugate at m/z 271. Both the glutathione and cysteine conjugates produced a common fragment ion at m/z 184. The on-line reaction of glutathione and electrochemically generated N-acetyl-p-benzoquinoneimine was monitored at varying pH. At pH 8.5 the ion intensity for the acetaminophen-glutathione conjugate was greater than at lower pH, indicating that lower proton concentration enhanced the reaction of glutathione with N-acetyl-p-benzoquinoneimine. This on-line electrochemical-thermospray mass spectrometric method demonstrated that acetaminophen conjugates may be formed and detected in the time frame of 1 s.


Subject(s)
Acetaminophen/metabolism , Chromatography, High Pressure Liquid/methods , Glutathione/metabolism , Mass Spectrometry/methods , Chemical Phenomena , Chemistry , Electrochemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...