Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Type of study
Publication year range
1.
Biomacromolecules ; 24(4): 1901-1911, 2023 04 10.
Article in English | MEDLINE | ID: mdl-36989087

ABSTRACT

A series of four oxime-linked octavalent sialic acid and oligosialic acid poly(ether amidoamine) glycodendrimers were synthesized. In the attachment of the sialic acids to the dendrimer core, chemoselective oxime bonds were formed between the unprotected sugars (sialic acid or α-2,8-linked di- through tetra-sialic acids) and the aminooxy-terminated dendrimer core in a microwave-mediated reaction, resulting in good to excellent yields (58-100%) of the fully functionalized octavalent glycodendrimers. Next, using a combination of 1D and 2D nuclear magnetic resonance and working from the inside outward, we employed a systematic method to assign the proton and carbon signals starting with the smallest linkers and dendrimer cores and moving gradually up to the completed octavalent glycodendrimers. Through this approach, the assignment of the protons and carbons was possible, including the E- and Z-isomers related to the oxime dendrimer to sugar connections and relative quantities of each. These glycodendrimers were designed as broad-spectrum inhibitors of viral pathogens.


Subject(s)
Dendrimers , N-Acetylneuraminic Acid , N-Acetylneuraminic Acid/chemistry , Oximes/chemistry , Dendrimers/chemistry , Magnetic Resonance Spectroscopy , Sialic Acids
2.
Adv Ther (Weinh) ; 4(4): 2000210, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33786368

ABSTRACT

Hexavalent sulfoglycodendrimers (SGDs) are synthesized as mimics of host cell heparan sulfate proteoglycans (HSPGs) to inhibit the early stages in viral binding/entry of HIV-1 and SARS-CoV-2. Using an HIV neutralization assay, the most promising of the seven candidates are found to have sub-micromolar anti-HIV activities. Molecular dynamics simulations are separately implemented to investigate how/where the SGDs interacted with both pathogens. The simulations revealed that the SGDs: 1) develop multivalent binding with polybasic regions within and outside of the V3 loop on glycoprotein 120 (gp120) for HIV-1, and consecutively bind with multiple gp120 subunits, and 2) interact with basic amino acids in both the angiotensin-converting enzyme 2 (ACE2) and HSPG binding regions of the Receptor Binding Domain (RBD) from SARS-CoV-2. These results illustrate the considerable potential of SGDs as inhibitors in viral binding/entry of both HIV-1 and SARS-CoV-2 pathogens, leading the way for further development of this class of molecules as broad-spectrum antiviral agents.

3.
J Phys Chem Lett ; 12(5): 1438-1442, 2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33523655

ABSTRACT

The dramatic impact novel viruses can have on humans could be more quickly mitigated if generic antibodies already present in one's system are temporarily retrained to recognize these viruses. This type of intervention can be administered during the early stages of infection, while a specific immune response is being developed. With this idea in mind, double-faced peptide-based boosters were computationally designed to allow recognition of SARS-CoV-2 by Hepatitis B antibodies. One booster face is made of ACE2-mimic peptides that can bind to the receptor binding domain (RBD) of SARS-CoV-2. The other booster face is composed of a Hepatitis B core-antigen, targeting the Hepatitis B antibody fragment. Molecular dynamics simulations revealed that the designed boosters have a highly specific and stable binding to both the RBD and the antibody fragment (AF). This approach can provide a cheap and efficient neutralization of emerging pathogens.


Subject(s)
Hepatitis B Antibodies/chemistry , SARS-CoV-2/chemistry , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/chemistry , Binding Sites , Humans , Immunoglobulin Fragments/chemistry , Molecular Dynamics Simulation , Peptides/chemistry , Protein Binding , Protein Conformation , Single-Chain Antibodies/chemistry , Thermodynamics
4.
ACS Appl Polym Mater ; 2(11): 4345-4351, 2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33681810

ABSTRACT

A series of four sialic acid-containing hexavalent sulfoglycodendrimers (SGDs) were synthesized in excellent yields using an efficient strategy involving multiple microwave-mediated reactions. Four sugars, sialic acid, and the dimer through tetramer of α-2→8-linked oligosialic acid were added to an aminooxy-terminated hexavalent dendrimer core using a chemoselective oxime-forming reaction. This method resulted in substantial improvements in reaction time and product yields over previous methods. These multivalent glycopolymers were designed as potential topical agents for preventing the sexual transmission of HIV-1. While inactive against HIV-1, the SGDs were also not cytotoxic, opening a pathway for the further development of anti-HIV SGDs.

5.
Tetrahedron Lett ; 55(14): 2270-2273, 2014 Apr 02.
Article in English | MEDLINE | ID: mdl-25382876

ABSTRACT

A series of three linear and two trivalent aminooxy-containing hydrophilic linkers and cores were synthesized. The five molecules contain from one to three aminooxy groups, and all but one contain an ether for enhanced aqueous solubility. These unique and versatile molecules can be utilized in the chemoselective conjugation of aldehyde/ketone-containing molecules, including reducing sugars, under mild aqueous conditions, and give rise to oxime-containing conjugates useful in a wide variety of applications and studies. The value of these aminooxy-based molecules and the ease and speed of preparation of both monovalent and multivalent oxime-linked molecules is demonstrated in two examples using the disaccharide cellobiose; one with a linear linker, and the second with a trivalent core.

6.
Bioconjug Chem ; 22(10): 2186-97, 2011 Oct 19.
Article in English | MEDLINE | ID: mdl-21859137

ABSTRACT

A study was undertaken to evaluate the feasibility of synthesizing six sialic acid-PAMAM glycodendrimers using unprotected sialic acid in as few as 1-4 steps using two different reaction pathways, and to assess the sulfated derivatives for anti-HIV activity. The syntheses were accomplished through either the direct attachment of the sialic acid carboxyl group to amine-terminated PAMAM (a divergent-like approach) using BOP coupling, or by first reacting sialic acid with a polar bifunctional spacer molecule, attaching the sugar-linker to carboxy-terminated PAMAM (a convergent-like approach), and again using BOP-mediated coupling reactions. It was hypothesized that the latter approach would be the most successful method, as any steric congestion between the sialic acid and the PAMAM would be minimized using an intervening polar linker. However, the divergent-like synthesis proved to be the superior method, resulting in 11.4%, 14%, and 28% of the fully substituted generations 0, 1, and 2 sialic acid-PAMAM conjugates, respectively, as compared to 6.4% of only the generation -0.5 sialic acid-linker-PAMAM conjugate for the convergent-like method. Upon sulfation of the four glycodendrimers, binding capabilities to the recombinant HIV protein, gp120, were assessed using an ELISA assay. Compounds that showed promising binding characteristics were then further assessed for inhibition of HIV-1 infection using a well-characterized luciferase reporter gene neutralization assay. The generation 2 sulfated sialic acid-PAMAM glycodendrimer, sulfo-6, bearing 16 sialic acids with 11 sulfate groups incorporated at 4.03% sulfur content by weight, was found to inhibit all four HIV-1 strains tested in the low micromolar range.


Subject(s)
Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , Dendrimers/chemistry , Dendrimers/pharmacology , HIV-1/drug effects , N-Acetylneuraminic Acid/chemistry , N-Acetylneuraminic Acid/pharmacology , HIV Envelope Protein gp120/metabolism , HIV Infections/drug therapy , Humans
8.
Biochem Mol Biol Educ ; 34(5): 369-77, 2006 Sep.
Article in English | MEDLINE | ID: mdl-21638721

ABSTRACT

A second semester biochemistry laboratory has been implemented as an independent projects course at California State University, Sacramento since 1999. To incorporate aspects of carbohydrate biochemistry, or glycobiology, into our curriculum, projects in lectin isolation and purification were undertaken over the course of two semesters. Through this modification in course content, this class now offers a diverse, hands-on treatment of not only standard protein purification techniques but also carbohydrate techniques, specifically the study of carbohydrate-protein interactions through hemagglutination assays, a novel commercial assay known as the Instant™Chek assay, and the generation and use of appropriate affinity chromatography matrices. Throughout the semester, the students are in charge of all aspects of their projects, from planning to execution and completion. Specific examples of student projects are highlighted such that the breadth of protein-carbohydrate chemistry pursued in a 15-week semester can be appreciated. The feedback of the course was very favorable, indicating that the students came away with skills necessary for them to be successful in their future careers. Most importantly, however, aspects of glycobiology have now been incorporated effectively into a mainstream undergraduate biochemistry laboratory class.

9.
J Am Chem Soc ; 124(6): 968-77, 2002 Feb 13.
Article in English | MEDLINE | ID: mdl-11829604

ABSTRACT

The interaction of recombinant HIV-1 surface glycoprotein gp120 (rgp120) with natural isolates of lactosylceramide (LacCer), glucosylceramide (GlcCer), and galactosylceramide (GalCer) has been quantitatively measured under equilibrium conditions using total internal reflection fluorescence (TIRF) spectroscopy. The binding affinity (K(a)) of rgp120 to these glycosphingolipids (GSLs), reconstituted at 5 mol % in supported planar lipid bilayers composed of 95 mol % POPC, is ca. 10(6) M(-1) for dissolved rgp120 concentrations greater than 25 nM. In contrast, at concentrations of rgp120 between 0.2 and 15 nM, rgp120 does not bind significantly to LacCer and GlcCer, but has a high affinity for GalCer with a measured K(a) value of 1.6 x 10(9) M(-1). However, protein surface coverage measurements show that this strong binding process accounts for very little of the total protein adsorbed over the entire concentration range studied. At a protein concentration of ca. 20 nM, the surface coverage is only 3% of that achieved at apparent saturation (i.e., when the protein concentration is ca. 220 nM). Thus the "high affinity" binding sites comprise only a small fraction of the total number of binding sites. Several other variables were investigated. Rgp120 binding behavior at membranes doped with alpha-hydroxygalactosylceramide (alpha-GalCer) was very similar to that observed with GalCer, showing that the presence/absence of an alpha-hydroxy moiety does not significantly affect galactosylceramide recognition. Phase segregation of GalCer, which occurs when the mole fraction of this GSL in a POPC bilayer exceeds ca. 0.1, was also investigated and showed no effect on binding affinity at low rgp120 concentrations. To investigate the influence of fatty acid chain length, GSLs with monodisperse C(18) and C(24) chain lengths, both with and without an alpha-hydroxy moiety, were synthesized, and their binding affinity to rgp120 was examined. Relative to the natural isolates (which contain a mixture of chain lengths), minimal differences were observed; thus among the compounds tested, fatty acid chain length does not affect GSL recognition. The results of this work should aid efforts to design anti-HIV-1 agents based on membrane-tethered, carbohydrate-based receptors for rgp120.


Subject(s)
Antigens, CD , Ceramides/metabolism , HIV Envelope Protein gp120/metabolism , Lipid Bilayers/metabolism , Galactosylceramides/metabolism , Glucosylceramides/metabolism , Hydroxylation , Kinetics , Lactosylceramides/metabolism , Membranes/metabolism , Protein Binding , Recombinant Proteins/metabolism
10.
Bioorg Med Chem ; 10(3): 625-37, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11814851

ABSTRACT

Interactions of recombinant gp120 (rgp120) with non-natural glycosphingolipids (GSLs) and structurally simpler analogues have been studied using a competitive adhesion assay. Conjugates of cellobiosyl ceramide and melibiosyl ceramide were synthetically prepared as water-soluble GSL analogues. These ligands were screened against a panel of biologically relevant analogues, and the results show that their interactions with rgp120 are comparable to natural cellular receptors. Glycolipid interactions with rgp120 were probed further by the synthesis and testing of structurally simpler analogues that were obtained by reductive amination of lactose, cellobiose, and melibiose with a biotinylated amino ethylene glycol moiety. RGp120 did not recognize conjugates lacking a lipid component. However, palmitoylation of the secondary amino alditols yielded compounds with comparable rgp120 affinity to the natural cellular receptor, galactosyl ceramide (GalCer). Taken together, the SAR showed that both a hydrophobic and a hydrophilic component are required for rgp120 recognition. Moreover, structural variability in the carbohydrate headgroup did not significantly alter rgp120 recognition indicating that this interaction is not highly specific.


Subject(s)
Glycosphingolipids/chemical synthesis , HIV Envelope Protein gp120/metabolism , Binding, Competitive , Glycosphingolipids/pharmacokinetics , Humans , Protein Binding , Recombinant Proteins/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...