Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(22): e2220041120, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37216505

ABSTRACT

Histone modifications coupled to transcription elongation play important roles in regulating the accuracy and efficiency of gene expression. The monoubiquitylation of a conserved lysine in H2B (K123 in Saccharomyces cerevisiae; K120 in humans) occurs cotranscriptionally and is required for initiating a histone modification cascade on active genes. H2BK123 ubiquitylation (H2BK123ub) requires the RNA polymerase II (RNAPII)-associated Paf1 transcription elongation complex (Paf1C). Through its histone modification domain (HMD), the Rtf1 subunit of Paf1C directly interacts with the ubiquitin conjugase Rad6, leading to the stimulation of H2BK123ub in vivo and in vitro. To understand the molecular mechanisms that target Rad6 to its histone substrate, we identified the site of interaction for the HMD on Rad6. Using in vitro cross-linking followed by mass spectrometry, we localized the primary contact surface for the HMD to the highly conserved N-terminal helix of Rad6. Using a combination of genetic, biochemical, and in vivo protein cross-linking experiments, we characterized separation-of-function mutations in S. cerevisiae RAD6 that greatly impair the Rad6-HMD interaction and H2BK123 ubiquitylation but not other Rad6 functions. By employing RNA-sequencing as a sensitive approach for comparing mutant phenotypes, we show that mutating either side of the proposed Rad6-HMD interface yields strikingly similar transcriptome profiles that extensively overlap with those of a mutant that lacks the site of ubiquitylation in H2B. Our results fit a model in which a specific interface between a transcription elongation factor and a ubiquitin conjugase guides substrate selection toward a highly conserved chromatin target during active gene expression.


Subject(s)
Histones , Nuclear Proteins , Saccharomyces cerevisiae Proteins , TATA-Box Binding Protein , Ubiquitin-Conjugating Enzymes , gamma-Glutamyl Hydrolase , Histones/metabolism , Nuclear Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitination , TATA-Box Binding Protein/genetics , TATA-Box Binding Protein/metabolism
2.
Nucleic Acids Res ; 47(16): 8410-8423, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31226204

ABSTRACT

The nucleosome core regulates DNA-templated processes through the highly conserved nucleosome acidic patch. While structural and biochemical studies have shown that the acidic patch controls chromatin factor binding and activity, few studies have elucidated its functions in vivo. We employed site-specific crosslinking to identify proteins that directly bind the acidic patch in Saccharomyces cerevisiae and demonstrated crosslinking of histone H2A to Paf1 complex subunit Rtf1 and FACT subunit Spt16. Rtf1 bound to nucleosomes through its histone modification domain, supporting its role as a cofactor in H2B K123 ubiquitylation. An acidic patch mutant showed defects in nucleosome positioning and occupancy genome-wide. Our results provide new information on the chromatin engagement of two central players in transcription elongation and emphasize the importance of the nucleosome core as a hub for proteins that regulate chromatin during transcription.


Subject(s)
DNA, Fungal/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation, Fungal , Genome, Fungal , High Mobility Group Proteins/genetics , Nuclear Proteins/genetics , Nucleosomes/ultrastructure , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Transcriptional Elongation Factors/genetics , Binding Sites , DNA, Fungal/chemistry , DNA, Fungal/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , High Mobility Group Proteins/chemistry , High Mobility Group Proteins/metabolism , Histones/chemistry , Histones/genetics , Histones/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Nucleic Acid Conformation , Nucleosomes/metabolism , Protein Binding , Protein Conformation , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , TATA-Box Binding Protein/chemistry , TATA-Box Binding Protein/genetics , TATA-Box Binding Protein/metabolism , Transcription, Genetic , Transcriptional Elongation Factors/chemistry , Transcriptional Elongation Factors/metabolism , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...