Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(1): e0288477, 2024.
Article in English | MEDLINE | ID: mdl-38206932

ABSTRACT

Many species of wildlife alter their daily activity patterns in response to co-occurring species as well as the surrounding environment. Often smaller or subordinate species alter their activity patterns to avoid being active at the same time as larger, dominant species to avoid agonistic interactions. Human development can complicate interspecies interactions, as not all wildlife respond to human activity in the same manner. While some species may change the timing of their activity to avoid being active when humans are, others may be unaffected or may benefit from being active at the same time as humans to reduce predation risk or competition. To further explore these patterns, we used data from a coordinated national camera-trapping program (Snapshot USA) to explore how the activity patterns and temporal activity overlap of a suite of seven widely co-occurring mammalian mesocarnivores varied along a gradient of human development. Our focal species ranged in size from the large and often dominant coyote (Canis latrans) to the much smaller and subordinate Virginia opossum (Didelphis virginiana). Some species changed their activity based on surrounding human development. Coyotes were most active at night in areas of high and medium human development. Red fox (Vulpes vulpes) were more active at dusk in areas of high development relative to areas of low or medium development. However, because most species were primarily nocturnal regardless of human development, temporal activity overlap was high between all species. Only opossum and raccoon (Procyon lotor) showed changes in activity overlap with high overlap in areas of low development compared to areas of moderate development. Although we found that coyotes and red fox altered their activity patterns in response to human development, our results showed that competitive and predatory pressures between these seven widespread generalist species were insufficient to cause them to substantially alter their activity patterns.


Subject(s)
Coyotes , Foxes , Animals , Humans , Foxes/physiology , Coyotes/physiology , Animals, Wild , Opossums , Predatory Behavior , Raccoons
2.
Proc Biol Sci ; 290(2011): 20231390, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38018101

ABSTRACT

Collective action problems arise when cooperating individuals suffer costs of cooperation, while the benefits of cooperation are received by both cooperators and defectors. We address this problem using data from spotted hyenas fighting with lions. Lions are much larger and kill many hyenas, so these fights require cooperative mobbing by hyenas for them to succeed. We identify factors that predict when hyena groups engage in cooperative fights with lions, which individuals choose to participate and how the benefits of victory are distributed among cooperators and non-cooperators. We find that cooperative mobbing is better predicted by lower costs (no male lions, more hyenas) than higher benefits (need for food). Individual participation is facilitated by social factors, both over the long term (close kin, social bond strength) and the short term (greeting interactions prior to cooperation). Finally, we find some direct benefits of participation: after cooperation, participants were more likely to feed at contested carcasses than non-participants. Overall, these results are consistent with the hypothesis that, when animals face dangerous cooperative dilemmas, selection favours flexible strategies that are sensitive to dynamic factors emerging over multiple time scales.


Subject(s)
Hyaenidae , Lions , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...