Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Trends Ecol Evol ; 16(5): 235-242, 2001 May 01.
Article in English | MEDLINE | ID: mdl-11301152

ABSTRACT

Complete genome sequences are accumulating rapidly, culminating with the announcement of the human genome sequence in February 2001. In addition to cataloguing the diversity of genes and other sequences, genome sequences will provide the first detailed and complete data on gene families and genome organization, including data on evolutionary changes. Reciprocally, evolutionary biology will make important contributions to the efforts to understand functions of genes and other sequences in genomes. Large-scale, detailed and unbiased comparisons between species will illuminate the evolution of genes and genomes, and population genetics methods will enable detection of functionally important genes or sequences, including sequences that have been involved in adaptive changes.

2.
Genetics ; 157(1): 245-57, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11139506

ABSTRACT

Selection acting on codon usage can cause patterns of synonymous evolution to deviate considerably from those expected under neutrality. To investigate the quantitative relationship between parameters of mutation, selection, and demography, and patterns of synonymous site divergence, we have developed a novel combination of population genetic models and likelihood methods of phylogenetic sequence analysis. Comparing 50 orthologous gene pairs from Drosophila melanogaster and D. virilis and 27 from D. melanogaster and D. simulans, we show considerable variation between amino acids and genes in the strength of selection acting on codon usage and find evidence for both long-term and short-term changes in the strength of selection between species. Remarkably, D. melanogaster shows no evidence of current selection on codon usage, while its sister species D. simulans experiences only half the selection pressure for codon usage of their common ancestor. We also find evidence for considerable base asymmetries in the rate of mutation, such that the average synonymous mutation rate is 20-30% higher than in noncoding regions. A Bayesian approach is adopted to investigate how accounting for selection on codon usage influences estimates of the parameters of mutation.


Subject(s)
Drosophila/genetics , Evolution, Molecular , Mutation , Selection, Genetic , Animals , Base Composition , Codon/genetics , Drosophila melanogaster/genetics , Gene Frequency , Genes, Insect , Genetics, Population , Likelihood Functions , Models, Genetic
3.
Heredity (Edinb) ; 87(Pt 6): 613-20, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11903556

ABSTRACT

Recent claims that patterns of genetic variability in human mitochondria show evidence for recombination, have provoked considerable argument and much correspondence concerning the quality of the data, the nature of the analyses, and the biological realism of mitochondrial recombination. While the majority of evidence now points towards a lack of effective recombination, at least in humans, the debate has highlighted how difficult the detection of recombination can be in genomes with unusual mutation processes and complex demographic histories. A major difficulty is the lack of consensus about how to measure linkage disequilibrium. I show that measures differ in the way they treat data that are uninformative about recombination, and that when just those pairwise comparisons that are informative about recombination are used, there is agreement between different statistics. In this light, the significant negative correlation between linkage disequilibrium and distance, in at least some of the data sets, is a real pattern that requires explanation. I discuss whether plausible mutational and selective processes can give rise to such a pattern.


Subject(s)
Genetic Variation , Mitochondria/genetics , Recombination, Genetic , Evolution, Molecular , Linkage Disequilibrium/genetics , Statistics as Topic
4.
Genetics ; 155(2): 929-44, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10835411

ABSTRACT

Associations between selected alleles and the genetic backgrounds on which they are found can reduce the efficacy of selection. We consider the extent to which such interference, known as the Hill-Robertson effect, acting between weakly selected alleles, can restrict molecular adaptation and affect patterns of polymorphism and divergence. In particular, we focus on synonymous-site mutations, considering the fate of novel variants in a two-locus model and the equilibrium effects of interference with multiple loci and reversible mutation. We find that weak selection Hill-Robertson (wsHR) interference can considerably reduce adaptation, e.g., codon bias, and, to a lesser extent, levels of polymorphism, particularly in regions of low recombination. Interference causes the frequency distribution of segregating sites to resemble that expected from more weakly selected mutations and also generates specific patterns of linkage disequilibrium. While the selection coefficients involved are small, the fitness consequences of wsHR interference across the genome can be considerable. We suggest that wsHR interference is an important force in the evolution of nonrecombining genomes and may explain the unexpected constancy of codon bias across species of very different census population sizes, as well as several unusual features of codon usage in Drosophila.


Subject(s)
Evolution, Molecular , Genetic Variation , Mutation , Alleles , Gene Frequency , Linkage Disequilibrium , Models, Genetic , Selection, Genetic
5.
Genetics ; 154(4): 1711-20, 2000 Apr.
Article in English | MEDLINE | ID: mdl-10747064

ABSTRACT

The amino acid sequence of the transformer (tra) gene exhibits an extremely rapid rate of evolution among Drosophila species, although the gene performs a critical step in sex determination. These changes in amino acid sequence are the result of either natural selection or neutral evolution. To differentiate between selective and neutral causes of this evolutionary change, analyses of both intraspecific and interspecific patterns of molecular evolution of tra gene sequences are presented. Sequences of 31 tra alleles were obtained from Drosophila americana. Many replacement and silent nucleotide variants are present among the alleles; however, the distribution of this sequence variation is consistent with neutral evolution. Sequence evolution was also examined among six species representative of the genus Drosophila. For most lineages and most regions of the gene, both silent and replacement substitutions have accumulated in a constant, clock-like manner. In exon 3 of D. virilis and D. americana we find evidence for an elevated rate of nonsynonymous substitution, but no statistical support for a greater rate of nonsynonymous relative to synonymous substitutions. Both levels of analysis of the tra sequence suggest that, although the gene is evolving at a rapid pace, these changes are neutral in function.


Subject(s)
Drosophila/genetics , Evolution, Molecular , Nuclear Proteins/genetics , Sex Determination Processes , Animals , Base Sequence , Drosophila Proteins , Genetic Variation , Molecular Sequence Data , Sequence Homology, Nucleic Acid , Species Specificity
6.
J Mol Evol ; 50(3): 264-75, 2000 Mar.
Article in English | MEDLINE | ID: mdl-10754070

ABSTRACT

In bacteria, synonymous codon usage can be considerably affected by base composition at neighboring sites. Such context-dependent biases may be caused by either selection against specific nucleotide motifs or context-dependent mutation biases. Here we consider the evolutionary conservation of context-dependent codon bias across 11 completely sequenced bacterial genomes. In particular, we focus on two contextual biases previously identified in Escherichia coli; the avoidance of out-of-frame stop codons and AGG motifs. By identifying homologues of E. coli genes, we also investigate the effect of gene expression level in Haemophilus influenzae and Mycoplasma genitalium. We find that while context-dependent codon biases are widespread in bacteria, few are conserved across all species considered. Avoidance of out-of-frame stop codons does not apply to all stop codons or amino acids in E. coli, does not hold for different species, does not increase with gene expression level, and is not relaxed in Mycoplasma spp., in which the canonical stop codon, TGA, is recognized as tryptophan. Avoidance of AGG motifs shows some evolutionary conservation and increases with gene expression level in E. coli, suggestive of the action of selection, but the cause of the bias differs between species. These results demonstrate that strong context-dependent forces, both selective and mutational, operate on synonymous codon usage but that these differ considerably between genomes.


Subject(s)
Codon , Escherichia coli/genetics , Evolution, Molecular , Haemophilus influenzae/genetics , Mycoplasma/genetics , Open Reading Frames , Phylogeny
7.
J Mol Evol ; 49(1): 63-75, 1999 Jul.
Article in English | MEDLINE | ID: mdl-10368435

ABSTRACT

Synonymous codon usage in related species may differ as a result of variation in mutation biases, differences in the overall strength and efficiency of selection, and shifts in codon preference-the selective hierarchy of codons within and between amino acids. We have developed a maximum-likelihood method to employ explicit population genetic models to analyze the evolution of parameters determining codon usage. The method is applied to twofold degenerate amino acids in 50 orthologous genes from D. melanogaster and D. virilis. We find that D. virilis has significantly reduced selection on codon usage for all amino acids, but the data are incompatible with a simple model in which there is a single difference in the long-term Ne, or overall strength of selection, between the two species, indicating shifts in codon preference. The strength of selection acting on codon usage in D. melanogaster is estimated to be |Nes| approximately 0.4 for most CT-ending twofold degenerate amino acids, but 1.7 times greater for cysteine and 1.4 times greater for AG-ending codons. In D. virilis, the strength of selection acting on codon usage for most amino acids is only half that acting in D. melanogaster but is considerably greater than half for cysteine, perhaps indicating the dual selection pressures of translational efficiency and accuracy. Selection coefficients in orthologues are highly correlated (rho = 0.46), but a number of genes deviate significantly from this relationship.


Subject(s)
Codon , Drosophila/genetics , Evolution, Molecular , Likelihood Functions , Models, Genetic , Amino Acids/genetics , Animals , Base Sequence , Drosophila melanogaster/genetics , Genetic Heterogeneity , Genetic Variation , Models, Statistical , Mutation , Selection, Genetic , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...