Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38857538

ABSTRACT

The fidelity of genetic information is essential for cellular function and viability. DNA double-strand breaks (DSBs) pose a significant threat to genome integrity, necessitating efficient repair mechanisms. While the predominant repair strategies are usually accurate, paradoxically, error-prone pathways also exist. This review explores recent advances and our understanding of microhomology-mediated end joining (MMEJ), an intrinsically mutagenic DSB repair pathway conserved across organisms. Central to MMEJ is the activity of DNA polymerase theta (Polθ), a specialized polymerase that fuels MMEJ mutagenicity. We examine the molecular intricacies underlying MMEJ activity and discuss its function during mitosis, where the activity of Polθ emerges as a last-ditch effort to resolve persistent DSBs, especially when homologous recombination is compromised. We explore the promising therapeutic applications of targeting Polθ in cancer treatment and genome editing. Lastly, we discuss the evolutionary consequences of MMEJ, highlighting its delicate balance between protecting genome integrity and driving genomic diversity.

2.
bioRxiv ; 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38405884

ABSTRACT

When replication forks encounter damaged DNA, cells utilize DNA damage tolerance mechanisms to allow replication to proceed. These include translesion synthesis at the fork, postreplication gap filling, and template switching via fork reversal or homologous recombination. The extent to which these different damage tolerance mechanisms are utilized depends on cell, tissue, and developmental context-specific cues, the last two of which are poorly understood. To address this gap, we have investigated damage tolerance responses following alkylation damage in Drosophila melanogaster. We report that translesion synthesis, rather than template switching, is the preferred response to alkylation-induced damage in diploid larval tissues. Furthermore, we show that the REV1 protein plays a multi-faceted role in damage tolerance in Drosophila. Drosophila larvae lacking REV1 are hypersensitive to methyl methanesulfonate (MMS) and have highly elevated levels of γ-H2Av foci and chromosome aberrations in MMS-treated tissues. Loss of the REV1 C-terminal domain (CTD), which recruits multiple translesion polymerases to damage sites, sensitizes flies to MMS. In the absence of the REV1 CTD, DNA polymerases eta and zeta become critical for MMS tolerance. In addition, flies lacking REV3, the catalytic subunit of polymerase zeta, require the deoxycytidyl transferase activity of REV1 to tolerate MMS. Together, our results demonstrate that Drosophila prioritize the use of multiple translesion polymerases to tolerate alkylation damage and highlight the critical role of REV1 in the coordination of this response to prevent genome instability.

3.
J Exp Zool A Ecol Integr Physiol ; 341(3): 256-263, 2024 04.
Article in English | MEDLINE | ID: mdl-38221843

ABSTRACT

A hallmark of the vertebrate stress response is a rapid increase in glucocorticoids and catecholamines; however, this does not mean that these mediators are the best, or should be the only, metric measured when studying stress. Instead, it is becoming increasingly clear that assaying a suite of downstream metrics is necessary in stress physiology. One component of this suite could be assessing double-stranded DNA damage (dsDNA damage), which has recently been shown to increase in blood with both acute and chronic stress in house sparrows (Passer domesticus). To further understand the relationship between stress and dsDNA damage, we designed two experiments to address the following questions: (1) how does dsDNA damage with chronic stress vary across tissues? (2) does the increase in dsDNA damage during acute stress come from one arm of the stress response or both? We found that (1) dsDNA damage affects tissues differently during chronic stress and (2) the hypothalamic-pituitary-adrenal axis influences dsDNA damage with acute stress, but the sympathetic-adreno-medullary system does not. Surprisingly, our data are not explained by studies on changes in hormone receptor levels with chronic stress, so the underlying mechanism remains unclear.


Subject(s)
Corticosterone , Hypothalamo-Hypophyseal System , Animals , Hypothalamo-Hypophyseal System/physiology , Stress, Physiological , Pituitary-Adrenal System/physiology , DNA Damage
4.
bioRxiv ; 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37645729

ABSTRACT

Pericentromeric heterochromatin is highly enriched for repetitive sequences prone to aberrant recombination. Previous studies showed that homologous recombination (HR) repair is uniquely regulated in this domain to enable 'safe' repair while preventing aberrant recombination. In Drosophila cells, DNA double-strand breaks (DSBs) relocalize to the nuclear periphery through nuclear actin-driven directed motions before recruiting the strand invasion protein Rad51 and completing HR repair. End-joining (EJ) repair also occurs with high frequency in heterochromatin of fly tissues, but how alternative EJ (alt-EJ) pathways operate in heterochromatin remains largely uncharacterized. Here, we induce DSBs in single euchromatic and heterochromatic sites using a new system that combines the DR- white reporter and I-SceI expression in spermatogonia of flies. Using this approach, we detect higher frequency of HR repair in heterochromatin, relative to euchromatin. Further, sequencing of mutagenic repair junctions reveals the preferential use of different EJ pathways across distinct euchromatic and heterochromatic sites. Interestingly, synthesis-dependent microhomology-mediated end joining (SD-MMEJ) appears differentially regulated in the two domains, with a preferential use of motifs close to the cut site in heterochromatin relative to euchromatin, resulting in smaller deletions. Together, these studies establish a new approach to study repair outcomes in fly tissues, and support the conclusion that heterochromatin uses more HR and less mutagenic EJ repair relative to euchromatin.

5.
Genes (Basel) ; 14(7)2023 06 30.
Article in English | MEDLINE | ID: mdl-37510290

ABSTRACT

Cells are constantly assaulted by endogenous and exogenous sources of DNA damage that threaten genome stability [...].


Subject(s)
DNA Damage , DNA Repair , Humans , DNA Repair/genetics , DNA Damage/genetics , Genomic Instability
6.
Mol Cell ; 82(20): 3757-3759, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36270245

ABSTRACT

Deshpande et al. (2022) demonstrate that BRCA1, a tumor suppressor tasked with protecting the genome, is encoded by a gene that is intrinsically fragile.


Subject(s)
BRCA1 Protein , Genes, Tumor Suppressor , BRCA1 Protein/genetics
7.
J Exp Zool A Ecol Integr Physiol ; 337(8): 789-794, 2022 10.
Article in English | MEDLINE | ID: mdl-35833487

ABSTRACT

Although stress can cause overall damage to the genome, it is currently unknown whether normal background damage to DNA varies throughout the annual cycle. If DNA damage did vary seasonally, it would have major implications on environmental-genomic interactions. We measured background DNA double-stranded breaks using the neutral comet assay in five tissues (nucleated red blood cells, abdominal fat, hippocampus, hypothalamus, and liver) in four cohorts of house sparrows (Passer domesticus): free-living summer, captives on a summer light cycle, free-living winter, and captives on a winter light cycle. The experiment was designed to answer three questions: (1) Is red blood cell DNA damage representative of other tissues? (2) Is DNA damage in captive birds representative of DNA damage in free-living birds? (3) Does DNA damage show seasonality? We found that (1) blood is a representative tissue, (2) captive animals are representative of free-living animals, and (3) DNA damage is higher in the summer than in the winter. These data indicate that red blood cells can be an index of DNA damage throughout the body and that background levels of DNA damage show substantial seasonal variation. The latter result suggests the possibility that underlying molecular mechanisms of DNA damage and/or repair also change seasonally.


Subject(s)
Sparrows , Animals , DNA Damage , Photoperiod , Seasons , Sparrows/physiology
8.
Nucleic Acids Res ; 50(13): 7465-7478, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35819195

ABSTRACT

Alternative end joining (alt-EJ) mechanisms, such as polymerase theta-mediated end joining, are increasingly recognized as important contributors to inaccurate double-strand break repair. We previously proposed an alt-EJ model whereby short DNA repeats near a double-strand break anneal to form secondary structures that prime limited DNA synthesis. The nascent DNA then pairs with microhomologous sequences on the other break end. This synthesis-dependent microhomology-mediated end joining (SD-MMEJ) explains many of the alt-EJ repair products recovered following I-SceI nuclease cutting in Drosophila. However, sequence-specific factors that influence SD-MMEJ repair remain to be fully characterized. Here, we expand the utility of the SD-MMEJ model through computational analysis of repair products at Cas9-induced double-strand breaks for 1100 different sequence contexts. We find evidence at single nucleotide resolution for sequence characteristics that drive successful SD-MMEJ repair. These include optimal primer repeat length, distance of repeats from the break, flexibility of DNA sequence between primer repeats, and positioning of microhomology templates relative to preferred primer repeats. In addition, we show that DNA polymerase theta is necessary for most SD-MMEJ repair at Cas9 breaks. The analysis described here includes a computational pipeline that can be utilized to characterize preferred mechanisms of alt-EJ repair in any sequence context.


Subject(s)
CRISPR-Cas Systems , DNA Breaks, Double-Stranded , DNA End-Joining Repair , Animals , DNA/chemistry , DNA/genetics , DNA Repair , Drosophila melanogaster
9.
Genes (Basel) ; 13(3)2022 03 08.
Article in English | MEDLINE | ID: mdl-35328029

ABSTRACT

Repair of DNA double-strand breaks by homologous recombination (HR) requires a carefully orchestrated sequence of events involving many proteins. One type of HR, synthesis-dependent strand annealing (SDSA), proceeds via the formation of a displacement loop (D-loop) when RAD51-coated single-stranded DNA invades a homologous template. The 3' end of the single-stranded DNA is extended by DNA synthesis. In SDSA, the D-loop is then disassembled prior to strand annealing. While many helicases can unwind D-loops in vitro, how their action is choreographed in vivo remains to be determined. To clarify the roles of various DNA helicases during SDSA, we used a double-strand gap repair assay to study the outcomes of homologous recombination repair in Drosophila melanogaster lacking the BLM, HELQ, and FANCM helicases. We found that the absence of any of these three helicases impairs gap repair. In addition, flies lacking both BLM and HELQ or HELQ and FANCM had more severe SDSA defects than the corresponding single mutants. In the absence of BLM, a large percentage of repair events were accompanied by flanking deletions. Strikingly, these deletions were mostly abolished in the blm helq and blm fancm double mutants. Our results suggest that the BLM, HELQ, and FANCM helicases play distinct roles during SDSA, with HELQ and FANCM acting early to promote the formation of recombination intermediates that are then processed by BLM to prevent repair by deletion-prone mechanisms.


Subject(s)
Drosophila melanogaster , Recombinational DNA Repair , Animals , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Repair/genetics , DNA, Single-Stranded/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism
10.
J Exp Zool A Ecol Integr Physiol ; 333(8): 595-606, 2020 10.
Article in English | MEDLINE | ID: mdl-32798291

ABSTRACT

Although corticosterone (Cort) has been the predominant metric used to assess acute stress in birds, it does not always accurately reflect how an animal copes with a stressor. Downstream measurements may be more reliable. In the current study, we tested the hypothesis that acute increases in DNA damage could be used to assess stressor exposure. Studies have shown DNA damage increases in response to stress-related hormones in vitro; however, this has not yet been thoroughly applied in wild animals. We exposed house sparrows (Passer domesticus) to a 30- or 120-min restraint stressor and took blood samples at 0, 30, 60, and 120 min to measure Cort, DNA damage, and uric acid. Both treatments increased DNA damage and Cort, and decreased uric acid. It thus appears that DNA damage can reflect acute stressor exposure. To improve the usability of DNA damage as a metric for stress, we also tested the impacts of sample storage on DNA damage. Leaving red blood cells on ice for up to 24 hr, only slightly influenced DNA damage. Freezing blood samples for 1-4 weeks substantially increased DNA damage. These findings emphasize the importance of reducing variation between samples by assaying them together whenever possible. Overall, these results indicate that assessing DNA damage is a valid method of assessing acute stressor exposure that is suitable for both laboratory- and field-based studies; however, additional research is needed on the molecular dynamics of nucleated red blood cells, including whether and how their DNA is repaired.


Subject(s)
DNA Damage/physiology , Sparrows/physiology , Stress, Physiological , Animals , Animals, Wild/physiology , Biomarkers , Corticosterone/blood , Erythrocytes/pathology , Freezing/adverse effects , Uric Acid/blood
11.
Cells ; 9(7)2020 07 09.
Article in English | MEDLINE | ID: mdl-32660124

ABSTRACT

Double-strand breaks are one of the most deleterious DNA lesions. Their repair via error-prone mechanisms can promote mutagenesis, loss of genetic information, and deregulation of the genome. These detrimental outcomes are significant drivers of human diseases, including many cancers. Mutagenic double-strand break repair also facilitates heritable genetic changes that drive organismal adaptation and evolution. In this review, we discuss the mechanisms of various error-prone DNA double-strand break repair processes and the cellular conditions that regulate them, with a focus on alternative end joining. We provide examples that illustrate how mutagenic double-strand break repair drives genome diversity and evolution. Finally, we discuss how error-prone break repair can be crucial to the induction and progression of diseases such as cancer.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Evolution, Molecular , Animals , Genomic Instability , Humans
12.
Sci Rep ; 10(1): 4512, 2020 03 11.
Article in English | MEDLINE | ID: mdl-32161356

ABSTRACT

Sertraline hydrochloride is a commonly prescribed antidepressant medication that acts by amplifying serotonin signaling. Numerous studies have suggested that children of women  taking sertraline during pregnancy have an increased risk of developmental defects. Resolving the degree of risk for human fetuses requires comprehensive knowledge of the pathways affected by this drug. We utilized a Drosophila melanogaster model system to assess the effects of sertraline throughout development. Ingestion of sertraline by females did not affect their fecundity or embryogenesis in their progeny. However, larvae that consumed sertraline experienced delayed developmental progression and reduced survival at all stages of development. Genetic experiments showed that these effects were mostly independent of aberrant extracellular serotonin levels. Using an ex vivo imaginal disc culture system, we showed that mitotically active sertraline-treated tissues accumulate DNA double-strand breaks and undergo apoptosis at increased frequencies. Remarkably, the sertraline-induced genotoxicity was partially rescued by co-incubation with ascorbic acid, suggesting that sertraline induces oxidative DNA damage. These findings may have implications for the biomedicine of sertraline-induced birth defects.


Subject(s)
Antioxidants/pharmacology , DNA Damage/drug effects , Drosophila/drug effects , Drosophila/genetics , Selective Serotonin Reuptake Inhibitors/pharmacology , Sertraline/pharmacology , Animals , Apoptosis/drug effects , Apoptosis/genetics , Dietary Supplements , Drug Antagonism , Larva
13.
Fly (Austin) ; 14(1-4): 49-61, 2020.
Article in English | MEDLINE | ID: mdl-31933406

ABSTRACT

DNA synthesis during replication or repair is a fundamental cellular process that is catalyzed by a set of evolutionary conserved polymerases. Despite a large body of research, the DNA polymerases of Drosophila melanogaster have not yet been systematically reviewed, leading to inconsistencies in their nomenclature, shortcomings in their functional (Gene Ontology, GO) annotations and an under-appreciation of the extent of their characterization. Here, we describe the complete set of DNA polymerases in D. melanogaster, applying nomenclature already in widespread use in other species, and improving their functional annotation. A total of 19 genes encode the proteins comprising three replicative polymerases (alpha-primase, delta, epsilon), five translesion/repair polymerases (zeta, eta, iota, Rev1, theta) and the mitochondrial polymerase (gamma). We also provide an overview of the biochemical and genetic characterization of these factors in D. melanogaster. This work, together with the incorporation of the improved nomenclature and GO annotation into key biological databases, including FlyBase and UniProtKB, will greatly facilitate access to information about these important proteins.


Subject(s)
DNA-Directed DNA Polymerase/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/enzymology , Gene Expression Regulation, Enzymologic/physiology , Animals , DNA-Directed DNA Polymerase/genetics , Drosophila Proteins/genetics
14.
Genetics ; 213(3): 835-847, 2019 11.
Article in English | MEDLINE | ID: mdl-31537623

ABSTRACT

PIF1 is a 5' to 3' DNA helicase that can unwind double-stranded DNA and disrupt nucleic acid-protein complexes. In Saccharomyces cerevisiae, Pif1 plays important roles in mitochondrial and nuclear genome maintenance, telomere length regulation, unwinding of G-quadruplex structures, and DNA synthesis during break-induced replication. Some, but not all, of these functions are shared with other eukaryotes. To gain insight into the evolutionarily conserved functions of PIF1, we created pif1 null mutants in Drosophila melanogaster and assessed their phenotypes throughout development. We found that pif1 mutant larvae exposed to high concentrations of hydroxyurea, but not other DNA damaging agents, experience reduced survival to adulthood. Embryos lacking PIF1 fail to segregate their chromosomes efficiently during early nuclear divisions, consistent with a defect in DNA replication. Furthermore, loss of the BRCA2 protein, which is required for stabilization of stalled replication forks in metazoans, causes synthetic lethality in third instar larvae lacking either PIF1 or the polymerase delta subunit POL32. Interestingly, pif1 mutants have a reduced ability to synthesize DNA during repair of a double-stranded gap, but only in the absence of POL32. Together, these results support a model in which Drosophila PIF1 functions with POL32 during times of replication stress but acts independently of POL32 to promote synthesis during double-strand gap repair.


Subject(s)
DNA Helicases/metabolism , DNA Replication , Drosophila Proteins/metabolism , Recombinational DNA Repair , Stress, Physiological , Animals , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , DNA Helicases/genetics , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster
15.
Exp Gerontol ; 127: 110733, 2019 11.
Article in English | MEDLINE | ID: mdl-31518666

ABSTRACT

Werner syndrome (WS) is an autosomal recessive progeroid disease characterized by patients' early onset of aging, increased risk of cancer and other age-related pathologies. WS is caused by mutations in WRN, a RecQ helicase that has essential roles responding to DNA damage and preventing genomic instability. While human WRN has both an exonuclease and helicase domain, Drosophila WRNexo has high genetic and functional homology to only the exonuclease domain of WRN. Like WRN-deficient human cells, Drosophila WRNexo null mutants (WRNexoΔ) are sensitive to replication stress, demonstrating mechanistic similarities between these two models. Compared to age-matched wild-type controls, WRNexoΔ flies exhibit increased physiological signs of aging, such as shorter lifespans, higher tumor incidence, muscle degeneration, reduced climbing ability, altered behavior, and reduced locomotor activity. Interestingly, these effects are more pronounced in females suggesting sex-specific differences in the role of WRNexo in aging. This and future mechanistic studies will contribute to our knowledge in linking faulty DNA repair mechanisms with the process of aging.


Subject(s)
Aging, Premature/genetics , Drosophila Proteins/deficiency , Exonucleases/deficiency , Werner Syndrome/physiopathology , Aging, Premature/physiopathology , Animals , Behavior, Animal/physiology , Body Composition/physiology , Body Weight/physiology , DNA Repair/physiology , Drosophila , Drosophila Proteins/genetics , Exonucleases/genetics , Female , Gastrointestinal Neoplasms/physiopathology , Male , Motor Activity/physiology , Muscle Weakness/genetics , Muscle Weakness/physiopathology , Mutation/genetics , Phenotype
16.
Article in English | MEDLINE | ID: mdl-30336278

ABSTRACT

Corticosterone does not change in consistent ways across species and contexts, making it challenging to use as an indicator of chronic stress. We assessed DNA damage as a potential metric that could be a more integrative stress measurement with direct links to health. We captured free-living house sparrows, took an immediate blood sample, and transferred them to the laboratory, exposing them to the chronic stress of captivity. Biweekly blood and weight samples were then taken for 4 weeks. We immediately assessed DNA damage in red blood cells using the comet assay and later quantified corticosterone. Uric acid was analyzed in a separate group of birds. We found that birds initially lost, but began to regain weight over the course of captivity. DNA damage peaked within the first 10 days of captivity, and mostly remained elevated. However, the cellular distribution of damage changed considerably over time; most cells showed low levels of damage early, a bimodal distribution of high and low DNA damage during the peak of damage, and a wide unimodal distribution of damage at the end of the 4 weeks. Furthermore, corticosterone increased and remained elevated and uric acid decreased and remained depleted over the same period. Although both a molecular (DNA damage) and an endocrine (corticosterone) marker showed similar response profiles over the 4 weeks, they were not correlated, suggesting they reflect different aspects of the underlying physiology. These data provide convincing preliminary evidence that DNA damage has potential to be an additional indicator of chronic stress.


Subject(s)
Corticosterone/blood , DNA Damage , Stress, Physiological , Uric Acid/blood , Animals , Female , Hypothalamo-Hypophyseal System , Male , Pituitary-Adrenal System , Sparrows/blood
17.
Methods Enzymol ; 601: 91-110, 2018.
Article in English | MEDLINE | ID: mdl-29523244

ABSTRACT

In this chapter, we describe a method for the recovery and analysis of alternative end-joining (alt-EJ) DNA double-strand break repair junctions following I-SceI cutting in Drosophila melanogaster embryos. Alt-EJ can be defined as a set of Ku70/80 and DNA ligase 4-independent end-joining processes that are typically mutagenic, producing deletions, insertions, and chromosomal rearrangements more frequently than higher-fidelity repair pathways such as classical nonhomologous end joining or homologous recombination. Alt-EJ has been observed to be upregulated in HR-deficient tumors and is essential for the survival and proliferation of these cells. Alt-EJ shares many initial processing steps with homologous recombination, specifically end resection; therefore, studying alt-EJ repair junctions can provide useful insight into aborted HR repair. Here, we describe the injection of plasmid constructs with specific cut sites into Drosophila embryos and the subsequent recovery of alt-EJ repair products. We also describe different analytical approaches using this system and how amplicon sequencing can be used to provide mechanistic information about alt-EJ.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Drosophila melanogaster/metabolism , Genetic Techniques , Animals , DNA/metabolism , DNA End-Joining Repair , Drosophila melanogaster/genetics , Embryo, Nonmammalian/metabolism , Ku Autoantigen/metabolism , Plasmids/metabolism
18.
Nucleic Acids Res ; 45(22): 12848-12861, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29121353

ABSTRACT

Alternative end-joining (alt-EJ) repair of DNA double-strand breaks is associated with deletions, chromosome translocations, and genome instability. Alt-EJ frequently uses annealing of microhomologous sequences to tether broken ends. When accessible pre-existing microhomologies do not exist, we have postulated that new microhomologies can be created via limited DNA synthesis at secondary-structure forming sequences. This model, called synthesis-dependent microhomology-mediated end joining (SD-MMEJ), predicts that differences between DNA sequences near double-strand breaks should alter repair outcomes in predictable ways. To test this hypothesis, we injected plasmids with sequence variations flanking an I-SceI endonuclease recognition site into I-SceI expressing Drosophila embryos and used Illumina amplicon sequencing to compare repair junctions. As predicted by the model, we found that small changes in sequences near the I-SceI site had major impacts on the spectrum of repair junctions. Bioinformatic analyses suggest that these repair differences arise from transiently forming loops and hairpins within 30 nucleotides of the break. We also obtained evidence for 'trans SD-MMEJ,' involving at least two consecutive rounds of microhomology annealing and synthesis across the break site. These results highlight the importance of sequence context for alt-EJ repair and have important implications for genome editing and genome evolution.


Subject(s)
DNA Breaks, Double-Stranded , DNA End-Joining Repair , DNA/chemistry , Nucleic Acid Conformation , Animals , Animals, Genetically Modified , Base Sequence , Binding Sites/genetics , DNA/genetics , DNA/metabolism , Deoxyribonucleases, Type II Site-Specific/genetics , Deoxyribonucleases, Type II Site-Specific/metabolism , Drosophila melanogaster/genetics , Models, Genetic , Plasmids/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
19.
Methods Mol Biol ; 1644: 203-211, 2017.
Article in English | MEDLINE | ID: mdl-28710767

ABSTRACT

In Drosophila melanogaster, DNA double-strand breaks (DSBs) created by exposure to gamma or X-ray radiation can be quantified by immunofluorescent detection of phosphorylated histone H2Av (γ-H2Av) foci in imaginal disc tissues. This technique has been less useful for studying DSBs in imaginal discs exposed to DSB-inducing chemicals, since standard protocols require raising larvae in food treated with liquid chemical suspensions. These protocols typically take 3-4 days to complete and result in heterogeneous responses that do not provide information about the kinetics of DSB formation and repair. Here, we describe a novel and rapid method to quantify DSBs in imaginal discs cultured ex vivo with methyl methanesulfonate (MMS) or other DSB-inducing chemicals. The described method requires less than 24 h and provides precise control over MMS concentration and exposure time, enabling reproducible detection of transient DSBs. Furthermore, this technique can be used for nearly any chemical treatment and can be modified and adapted for several different experimental setups and downstream molecular analyses.


Subject(s)
DNA Breaks, Double-Stranded , Drosophila melanogaster/genetics , Imaginal Discs/metabolism , Animals , Antibodies, Monoclonal/immunology , DNA Repair , Drosophila melanogaster/drug effects , Histones/genetics , Histones/metabolism , Imaginal Discs/drug effects , Methyl Methanesulfonate , Mutagens/toxicity , Phosphorylation
20.
PLoS Genet ; 13(5): e1006813, 2017 May.
Article in English | MEDLINE | ID: mdl-28542210

ABSTRACT

Double strand breaks (DSBs) and interstrand crosslinks (ICLs) are toxic DNA lesions that can be repaired through multiple pathways, some of which involve shared proteins. One of these proteins, DNA Polymerase θ (Pol θ), coordinates a mutagenic DSB repair pathway named microhomology-mediated end joining (MMEJ) and is also a critical component for bypass or repair of ICLs in several organisms. Pol θ contains both polymerase and helicase-like domains that are tethered by an unstructured central region. While the role of the polymerase domain in promoting MMEJ has been studied extensively both in vitro and in vivo, a function for the helicase-like domain, which possesses DNA-dependent ATPase activity, remains unclear. Here, we utilize genetic and biochemical analyses to examine the roles of the helicase-like and polymerase domains of Drosophila Pol θ. We demonstrate an absolute requirement for both polymerase and ATPase activities during ICL repair in vivo. However, similar to mammalian systems, polymerase activity, but not ATPase activity, is required for ionizing radiation-induced DSB repair. Using a site-specific break repair assay, we show that overall end-joining efficiency is not affected in ATPase-dead mutants, but there is a significant decrease in templated insertion events. In vitro, Pol θ can efficiently bypass a model unhooked nitrogen mustard crosslink and promote DNA synthesis following microhomology annealing, although ATPase activity is not required for these functions. Together, our data illustrate the functional importance of the helicase-like domain of Pol θ and suggest that its tethering to the polymerase domain is important for its multiple functions in DNA repair and damage tolerance.


Subject(s)
Catalytic Domain , DNA End-Joining Repair , DNA Repair Enzymes/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Animals , DNA Repair Enzymes/chemistry , DNA Repair Enzymes/genetics , DNA-Directed DNA Polymerase , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila melanogaster/enzymology , Drosophila melanogaster/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...