Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Pharmacol ; 133(2): 243-52, 2001 May.
Article in English | MEDLINE | ID: mdl-11350860

ABSTRACT

We examined the mechanisms underlying leukotriene D4- (LTD4) induced constriction of human small (300 - 500 micron i.d.) bronchioles, and the effect of LTD4 on ion currents and Ca2+ transients in smooth muscle cells (SMC) isolated from these bronchioles. LTD4 caused a concentration-dependent bronchoconstriction with an EC50=0.58+/-0.05 nM (n=7) which was not easily reversible upon washout. This bronchoconstriction was entirely dependent on extracellular Ca2+. Blockade of L-type Ca2+ channels with nifedipine (10 microM) reduced LTD4 response by 39+/-2% (n=8), whilst La3+, Gd3+ and SK&F 96,365 abolished LTD4-induced bronchoconstriction completely and reversibly, suggesting the majority of Ca2+ entry was via non-selective cation channels. Antagonists of PI-PLC (U73,122 and ET-18-OCH3), PLD (propranolol) and PKC (cheleretrine and Ro31-8220) were without any effect on LTD4-induced bronchoconstriction, whilst the PC-PLC inhibitor D609 caused complete relaxation. Inhibition of protein tyrosine kinase with tyrphostin A23 (100 microM) caused about 50% relaxation, although the inactive analogue tyrphostin A1 was without effect. In freshly isolated SMC from human small bronchioles LTD4 caused a slow increase of intracellular Ca2+ concentration, with a consequent rise of the activity of large conductance Ca2+-dependent K+ channels and the amplitude of depolarization-induced outward whole-cell current. Again, no effect of LTD4 could be observed in the absence of extracellular Ca2+. We conclude that LTD4 causes constriction of these small bronchioles primarily by activating Ca2+ entry via non-voltage gated channels, possibly by a PC-PLC mediated pathway.


Subject(s)
Bronchi/drug effects , Bronchoconstriction/drug effects , Calcium Signaling/physiology , Leukotriene D4/pharmacology , Aged , Aged, 80 and over , Bronchi/cytology , Calcium/metabolism , Calcium Signaling/drug effects , Cell Separation , Electrophysiology , Humans , In Vitro Techniques , Middle Aged , Muscle Contraction/drug effects , Muscle Tonus/drug effects , Muscle Tonus/physiology , Muscle, Smooth/cytology , Muscle, Smooth/drug effects , Patch-Clamp Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...