Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Physica E Low Dimens Syst Nanostruct ; 41(4): 723-728, 2009 Feb.
Article in English | MEDLINE | ID: mdl-21113399

ABSTRACT

A strategy for the functionalization of single-walled carbon nanotubes is reported. The synthesis involved the conversion of fluorinated single-walled carbon nanotubes to the thiolated derivative assisted by phosphorous pentasulfide. The thiol group is then quantitatively oxidized to the sulfonic acid group. The extent of oxidation of the thiol precursor is confirmed using X-ray photoelectron spectroscopy, which proved to be immensely useful to discriminate between the -SH and -SO(3)H with a chemical shift for the sulfur 2p (approx. 5 eV). The functionalized carbon nanotubes were further characterized by infrared spectroscopy, thermogravimetric analysis, and transmission electron microscopy which revealed a significant change in morphology between the fluoro carbon nanotubes, the thiol and sulfonic acid-modified carbon nanotubes.

2.
J Hazard Mater ; 139(2): 220-31, 2007 Jan 10.
Article in English | MEDLINE | ID: mdl-17113227

ABSTRACT

Combination of electrodes, such as aluminum and iron in a single electrochemical cell provide an alternative method for removal of arsenic from water by electrocoagulation. The removal process has been studied with a wide range of arsenic concentration (1-1000 ppm) at different pH (4-10). Analysis of the electrochemically generated by-products by XRD, XPS, SEM/EDAX, FT-IR, and Mössbauer Spectroscopy revealed the expected crystalline iron oxides (magnetite (Fe3O4), lepidocrocite (FeO(OH)), iron oxide (FeO)) and aluminum oxides (bayerite (Al(OH)3), diaspore (AlO(OH)), mansfieldite (AlAsO(4).2(H2O)), as well as some interaction between the two phases. The amorphous or very fine particular phase was also found in the floc. The substitution of Fe3+ ions by Al3+ ions in the solid surface has been observed, indicating an alternative removal mechanism of arsenic in these metal hydroxides and oxyhydroxides by providing larger surface area for arsenic adsorption via retarding the crystalline formation of iron oxides.


Subject(s)
Aluminum/chemistry , Arsenic/isolation & purification , Iron/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Aluminum Compounds/analysis , Electrochemistry , Electrodes , Iron Compounds/analysis , Microscopy, Electron, Scanning , Spectrum Analysis , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...