Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Sci Rep ; 14(1): 7240, 2024 03 27.
Article in English | MEDLINE | ID: mdl-38538671

ABSTRACT

A key control on the magnitude of coastal eutrophication is the degree to which currents quickly transport nitrogen derived from human sources away from the coast to the open ocean before eutrophication develops. In the Southern California Bight (SCB), an upwelling-dominated eastern boundary current ecosystem, anthropogenic nitrogen inputs increase algal productivity and cause subsurface acidification and oxygen (O 2 ) loss along the coast. However, the extent of anthropogenic influence on eutrophication beyond the coastal band, and the physical transport mechanisms and biogeochemical processes responsible for these effects are still poorly understood. Here, we use a submesoscale-resolving numerical model to document the detailed biogeochemical mass balance of nitrogen, carbon and oxygen, their physical transport, and effects on offshore habitats. Despite management of terrestrial nutrients that has occurred in the region over the last 20 years, coastal eutrophication continues to persist. The input of anthropogenic nutrients promote an increase in productivity, remineralization and respiration offshore, with recurrent O 2 loss and pH decline in a region located 30-90 km from the mainland. During 2013 to 2017, the spatially averaged 5-year loss rate across the Bight was 1.3 mmol m - 3 O 2 , with some locations losing on average up to 14.2 mmol m - 3 O 2 . The magnitude of loss is greater than model uncertainty assessed from data-model comparisons and from quantification of intrinsic variability. This phenomenon persists for 4 to 6 months of the year over an area of 278,40 km 2 ( ∼ 30% of SCB area). These recurrent features of acidification and oxygen loss are associated with cross-shore transport of nutrients by eddies and plankton biomass and their accumulation and retention within persistent eddies offshore within the SCB.


Subject(s)
Ecosystem , Eutrophication , Nitrogen , Oxygen , Plankton
2.
Sci Rep ; 13(1): 22148, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38092878

ABSTRACT

Climate change is increasing drought severity worldwide. Ocean discharges of municipal wastewater are a target for potable water recycling. Potable water recycling would reduce wastewater volume; however, the effect on mass nitrogen loading is dependent on treatment. In cases where nitrogen mass loading is not altered or altered minimally, this practice has the potential to influence spatial patterns in coastal eutrophication. We apply a physical-biogeochemical numerical ocean model to understand the influence of nitrogen management and potable wastewater recycling on net primary productivity (NPP), pH, and oxygen. We model several theoretical management scenarios by combining dissolved inorganic nitrogen (DIN) reductions from 50 to 85% and recycling from 0 to 90%, applied to 19 generalized wastewater outfalls in the Southern California Bight. Under no recycling, NPP, acidification, and oxygen loss decline with DIN reductions, which simulated habitat volume expansion for pelagic calcifiers and aerobic taxa. Recycling scenarios under intermediate DIN reduction show patchier areas of pH and oxygen loss with steeper vertical declines relative to a "no recycling" scenario. These patches are diminished under 85% DIN reduction across all recycling levels, suggesting nitrogen management lowers eutrophication risk even with concentrated discharges. These findings represent a novel application of ocean numerical models to investigate the regional effects of idealized outfall management on eutrophication. Additional work is needed to investigate more realistic outfall-specific water recycling and nutrient management scenarios and to contextualize the benefit of these management actions, given accelerating acidification and hypoxia from climate change.

3.
Chaos ; 33(9)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37729098

ABSTRACT

A general, variational approach to derive low-order reduced models from possibly non-autonomous systems is presented. The approach is based on the concept of optimal parameterizing manifold (OPM) that substitutes more classical notions of invariant or slow manifolds when the breakdown of "slaving" occurs, i.e., when the unresolved variables cannot be expressed as an exact functional of the resolved ones anymore. The OPM provides, within a given class of parameterizations of the unresolved variables, the manifold that averages out optimally these variables as conditioned on the resolved ones. The class of parameterizations retained here is that of continuous deformations of parameterizations rigorously valid near the onset of instability. These deformations are produced through the integration of auxiliary backward-forward systems built from the model's equations and lead to analytic formulas for parameterizations. In this modus operandi, the backward integration time is the key parameter to select per scale/variable to parameterize in order to derive the relevant parameterizations which are doomed to be no longer exact away from instability onset due to the breakdown of slaving typically encountered, e.g., for chaotic regimes. The selection criterion is then made through data-informed minimization of a least-square parameterization defect. It is thus shown through optimization of the backward integration time per scale/variable to parameterize, that skilled OPM reduced systems can be derived for predicting with accuracy higher-order critical transitions or catastrophic tipping phenomena, while training our parameterization formulas for regimes prior to these transitions takes place.

4.
Sci Rep ; 13(1): 5915, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37041230

ABSTRACT

Internal waves contain a large amount of energy in the ocean and are an important source of turbulent mixing. Ocean mixing is relevant for climate because it drives vertical transport of water, heat, carbon and other tracers. Understanding the life cycle of internal waves, from generation to dissipation, is therefore important for improving the representation of ocean mixing in climate models. Here, we provide evidence from a regional realistic numerical simulation in the northeastern Pacific that the wind can play an important role in damping internal waves through current feedback. This results in a reduction of 67% of wind power input at near-inertial frequencies in the region of study. Wind-current feedback also provides a net energy sink for internal tides, removing energy at a rate of 0.2 mW/m[Formula: see text] on average, corresponding to 8% of the local internal tide generation at the Mendocino ridge. The temporal variability and modal distribution of this energy sink are also investigated.

5.
Sci Rep ; 12(1): 6029, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35411014
6.
Chem Res Toxicol ; 35(3): 475-489, 2022 03 21.
Article in English | MEDLINE | ID: mdl-35212515

ABSTRACT

The potential for N-nitrosamine impurities in pharmaceutical products presents a challenge for the quality management of medicinal products. N-Nitrosamines are considered cohort-of-concern compounds due to the potent carcinogenicity of many of the structurally simple chemicals within this structural class. In the past 2 years, a number of drug products containing certain active pharmaceutical ingredients have been withdrawn or recalled from the market due to the presence of carcinogenic low-molecular-weight N,N-dialkylnitrosamine impurities. Regulatory authorities have issued guidance to market authorization holders to review all commercial drug substances/products for the potential risk of N-nitrosamine impurities, and in cases where a significant risk of N-nitrosamine impurity is identified, analytical confirmatory testing is required. A key factor to consider prior to analytical testing is the estimation of the daily acceptable intake (AI) of the N-nitrosamine impurity. A significant proportion of N-nitrosamine drug product impurities are unique/complex structures for which the development of low-level analytical methods is challenging. Moreover, these unique/complex impurities may be less potent carcinogens compared to simple nitrosamines. In the present work, our objective was to derive AIs for a large number of complex N-nitrosamines without carcinogenicity data that were identified as potential low-level impurities. The impurities were first cataloged and grouped according to common structural features, with a total of 13 groups defined with distinct structural features. Subsequently, carcinogenicity data were reviewed for structurally related N-nitrosamines relevant to each of the 13 structural groups and group AIs were derived conservatively based on the most potent N-nitrosamine within each group. The 13 structural group AIs were used as the basis for assigning AIs to each of the structurally related complex N-nitrosamine impurities. The AIs of several N-nitrosamine groups were found to be considerably higher than those for the simple N,N-dialkylnitrosamines, which translates to commensurately higher analytical method detection limits.


Subject(s)
Nitrosamines , Carcinogens , Drug Contamination , Humans
7.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Article in English | MEDLINE | ID: mdl-34819377

ABSTRACT

The problems of identifying the slow component (e.g., for weather forecast initialization) and of characterizing slow-fast interactions are central to geophysical fluid dynamics. In this study, the related rectification problem of slow manifold closures is addressed when breakdown of slow-to-fast scales deterministic parameterizations occurs due to explosive emergence of fast oscillations on the slow, geostrophic motion. For such regimes, it is shown on the Lorenz 80 model that if 1) the underlying manifold provides a good approximation of the optimal nonlinear parameterization that averages out the fast variables and 2) the residual dynamics off this manifold is mainly orthogonal to it, then no memory terms are required in the Mori-Zwanzig full closure. Instead, the noise term is key to resolve, and is shown to be, in this case, well modeled by a state-independent noise, obtained by means of networks of stochastic nonlinear oscillators. This stochastic parameterization allows, in turn, for rectifying the momentum-balanced slow manifold, and for accurate recovery of the multiscale dynamics. The approach is promising to be further applied to the closure of other more complex slow-fast systems, in strongly coupled regimes.

8.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Article in English | MEDLINE | ID: mdl-34001604

ABSTRACT

Global change is leading to warming, acidification, and oxygen loss in the ocean. In the Southern California Bight, an eastern boundary upwelling system, these stressors are exacerbated by the localized discharge of anthropogenically enhanced nutrients from a coastal population of 23 million people. Here, we use simulations with a high-resolution, physical-biogeochemical model to quantify the link between terrestrial and atmospheric nutrients, organic matter, and carbon inputs and biogeochemical change in the coastal waters of the Southern California Bight. The model is forced by large-scale climatic drivers and a reconstruction of local inputs via rivers, wastewater outfalls, and atmospheric deposition; it captures the fine scales of ocean circulation along the shelf; and it is validated against a large collection of physical and biogeochemical observations. Local land-based and atmospheric inputs, enhanced by anthropogenic sources, drive a 79% increase in phytoplankton biomass, a 23% increase in primary production, and a nearly 44% increase in subsurface respiration rates along the coast in summer, reshaping the biogeochemistry of the Southern California Bight. Seasonal reductions in subsurface oxygen, pH, and aragonite saturation state, by up to 50 mmol m-3, 0.09, and 0.47, respectively, rival or exceed the global open-ocean oxygen loss and acidification since the preindustrial period. The biological effects of these changes on local fisheries, proliferation of harmful algal blooms, water clarity, and submerged aquatic vegetation have yet to be fully explored.


Subject(s)
Carbon/metabolism , Ecosystem , Eutrophication , Phytoplankton/physiology , Fisheries , Humans , Oceans and Seas , Oxygen/metabolism , Seawater/chemistry
9.
Ann Rev Mar Sci ; 13: 227-253, 2021 01.
Article in English | MEDLINE | ID: mdl-33395349

ABSTRACT

Frontogenesis is the fluid-dynamical processes that rapidly sharpen horizontal density gradients and their associated horizontal velocity shears. It is a positive feedback process where the ageostrophic, overturning secondary circulation in the cross-front plane accelerates the frontal sharpening until an arrest occurs through frontal instability and other forms of turbulent mixing. Several well-known types of oceanic frontal phenomena are surveyed, their impacts on oceanic system functioning are assessed, and future research is envisioned.


Subject(s)
Hydrodynamics , Models, Theoretical , Oceanography/methods , Biomechanical Phenomena , Climate , Humans , Oceans and Seas
10.
Sci Adv ; 6(20): eaay3188, 2020 05.
Article in English | MEDLINE | ID: mdl-32440538

ABSTRACT

Climate warming is expected to intensify hypoxia in the California Current System (CCS), threatening its diverse and productive marine ecosystem. We analyzed past regional variability and future changes in the Metabolic Index (Φ), a species-specific measure of the environment's capacity to meet temperature-dependent organismal oxygen demand. Across the traits of diverse animals, Φ exhibits strong seasonal to interdecadal variations throughout the CCS, implying that resident species already experience large fluctuations in available aerobic habitat. For a key CCS species, northern anchovy, the long-term biogeographic distribution and decadal fluctuations in abundance are both highly coherent with aerobic habitat volume. Ocean warming and oxygen loss by 2100 are projected to decrease Φ below critical levels in 30 to 50% of anchovies' present range, including complete loss of aerobic habitat-and thus likely extirpation-from the southern CCS. Aerobic habitat loss will vary widely across the traits of CCS taxa, disrupting ecological interactions throughout the region.


Subject(s)
Climate , Ecosystem , Animals , California , Climate Change , Fishes , Oxygen , Temperature
11.
Sci Rep ; 8(1): 13388, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30190530

ABSTRACT

Oceanic submesoscale currents (SMCs) occur on an scale of 0.1-10 km horizontally and have a large influence on the oceanic variability and on ecosystems. At the mesoscale (10-250 km), oceanic thermal and current feedbacks are known to have a significant influence on the atmosphere and on oceanic dynamics. However, air-sea interactions at the submesoscale are not well known because the small size of SMCs presents observational and simulation barriers. Using high-resolution coupled oceanic and atmospheric models for the Central California region during the upwelling season, we show that the current feedback acting through the surface stress dominates the thermal feedback effect on the ocean and dampens the SMC variability by ≈17% ± 4%. As for the mesoscale, the current feedback induces an ocean sink of energy at the SMCs and a source of atmospheric energy that is related to induced Ekman pumping velocities. However, those additional vertical velocities also cause an increase of the injection of energy by baroclinic conversion into the SMCs, partially counteracting the sink of energy by the stress coupling. These stress coupling effects have important implications in understanding SMC variability and its links with the atmosphere and should be tested in other regions.

12.
Proc Natl Acad Sci U S A ; 115(6): 1162-1167, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29339497

ABSTRACT

Floating oil, plastics, and marine organisms are continually redistributed by ocean surface currents. Prediction of their resulting distribution on the surface is a fundamental, long-standing, and practically important problem. The dominant paradigm is dispersion within the dynamical context of a nondivergent flow: objects initially close together will on average spread apart but the area of surface patches of material does not change. Although this paradigm is likely valid at mesoscales, larger than 100 km in horizontal scale, recent theoretical studies of submesoscales (less than ∼10 km) predict strong surface convergences and downwelling associated with horizontal density fronts and cyclonic vortices. Here we show that such structures can dramatically concentrate floating material. More than half of an array of ∼200 surface drifters covering ∼20 × 20 km2 converged into a 60 × 60 m region within a week, a factor of more than 105 decrease in area, before slowly dispersing. As predicted, the convergence occurred at density fronts and with cyclonic vorticity. A zipperlike structure may play an important role. Cyclonic vorticity and vertical velocity reached 0.001 s-1 and 0.01 ms-1, respectively, which is much larger than usually inferred. This suggests a paradigm in which nearby objects form submesoscale clusters, and these clusters then spread apart. Together, these effects set both the overall extent and the finescale texture of a patch of floating material. Material concentrated at submesoscale convergences can create unique communities of organisms, amplify impacts of toxic material, and create opportunities to more efficiently recover such material.

13.
Sci Rep ; 7(1): 17747, 2017 12 18.
Article in English | MEDLINE | ID: mdl-29255277

ABSTRACT

Mesoscale eddies are present everywhere in the ocean and partly determine the mean state of the circulation and ecosystem. The current feedback on the surface wind stress modulates the air-sea transfer of momentum by providing a sink of mesoscale eddy energy as an atmospheric source. Using nine years of satellite measurements of surface stress and geostrophic currents over the global ocean, we confirm that the current-induced surface stress curl is linearly related to the current vorticity. The resulting coupling coefficient between current and surface stress (sτ [N s m-3]) is heterogeneous and can be roughly expressed as a linear function of the mean surface wind. sτ expresses the sink of eddy energy induced by the current feedback. This has important implications for air-sea interaction and implies that oceanic mean and mesoscale circulations and their effects on surface-layer ventilation and carbon uptake are better represented in oceanic models that include this feedback.

14.
Nat Commun ; 7: 12811, 2016 Sep 29.
Article in English | MEDLINE | ID: mdl-27681822

ABSTRACT

Most of the ocean kinetic energy is contained in the large scale currents and the vigorous geostrophic eddy field, at horizontal scales of order 100 km. To achieve equilibrium the geostrophic currents must viscously dissipate their kinetic energy at much smaller scale. However, geostrophic turbulence is characterized by an inverse cascade of energy towards larger scale, and the pathways of energy toward dissipation are still in question. Here, we present a mechanism, in the context of the Gulf Stream, where energy is transferred from the geostrophic flow to submesoscale wakes through anticyclonic vertical vorticity generation in the bottom boundary layer. The submesoscale turbulence leads to elevated local dissipation and mixing outside the oceanic boundary layers. This process is generic for boundary slope currents that flow in the direction of Kelvin wave propagation. Topographic generation of submesoscale flows potentially provides a new and significant route to energy dissipation for geostrophic flows.

15.
Proc Math Phys Eng Sci ; 472(2189): 20160117, 2016 May.
Article in English | MEDLINE | ID: mdl-27279778

ABSTRACT

This article is a perspective on the recently discovered realm of submesoscale currents in the ocean. They are intermediate-scale flow structures in the form of density fronts and filaments, topographic wakes and persistent coherent vortices at the surface and throughout the interior. They are created from mesoscale eddies and strong currents, and they provide a dynamical conduit for energy transfer towards microscale dissipation and diapycnal mixing. Consideration is given to their generation mechanisms, instabilities, life cycles, disruption of approximately diagnostic force balance (e.g. geostrophy), turbulent cascades, internal-wave interactions, and transport and dispersion of materials. At a fundamental level, more questions remain than answers, implicating a programme for further research.

16.
Proc Natl Acad Sci U S A ; 113(11): 2976-81, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26929376

ABSTRACT

Hydrothermal vent fields in the western Pacific Ocean are mostly distributed along spreading centers in submarine basins behind convergent plate boundaries. Larval dispersal resulting from deep-ocean circulations is one of the major factors influencing gene flow, diversity, and distributions of vent animals. By combining a biophysical model and deep-profiling float experiments, we quantify potential larval dispersal of vent species via ocean circulation in the western Pacific Ocean. We demonstrate that vent fields within back-arc basins could be well connected without particular directionality, whereas basin-to-basin dispersal is expected to occur infrequently, once in tens to hundreds of thousands of years, with clear dispersal barriers and directionality associated with ocean currents. The southwest Pacific vent complex, spanning more than 4,000 km, may be connected by the South Equatorial Current for species with a longer-than-average larval development time. Depending on larval dispersal depth, a strong western boundary current, the Kuroshio Current, could bridge vent fields from the Okinawa Trough to the Izu-Bonin Arc, which are 1,200 km apart. Outcomes of this study should help marine ecologists estimate gene flow among vent populations and design optimal marine conservation plans to protect one of the most unusual ecosystems on Earth.


Subject(s)
Aquatic Organisms , Hydrothermal Vents , Animal Distribution , Animals , Aquatic Organisms/growth & development , Biota , Bivalvia/growth & development , Ecosystem , Gastropoda/growth & development , Genetic Variation , Larva , Models, Theoretical , Pacific Ocean , Plankton , Temperature , Thoracica/growth & development , Water Movements
17.
Sci Adv ; 1(4): e1500014, 2015 May.
Article in English | MEDLINE | ID: mdl-26601179

ABSTRACT

Dominant climatic factors controlling the lifetime peak intensity of typhoons are determined from six decades of Pacific typhoon data. We find that upper ocean temperatures in the low-latitude northwestern Pacific (LLNWP) and sea surface temperatures in the central equatorial Pacific control the seasonal average lifetime peak intensity by setting the rate and duration of typhoon intensification, respectively. An anomalously strong LLNWP upper ocean warming has favored increased intensification rates and led to unprecedentedly high average typhoon intensity during the recent global warming hiatus period, despite a reduction in intensification duration tied to the central equatorial Pacific surface cooling. Continued LLNWP upper ocean warming as predicted under a moderate [that is, Representative Concentration Pathway (RCP) 4.5] climate change scenario is expected to further increase the average typhoon intensity by an additional 14% by 2100.

18.
Perm J ; 18(2): e141-5, 2014.
Article in English | MEDLINE | ID: mdl-24867561

ABSTRACT

CONTEXT: Excessive alcohol consumption is the nation's third leading cause of preventable deaths. If untreated, 6% of alcohol-dependent patients experience alcohol withdrawal, with up to 10% of those experiencing delirium tremens (DT), when they stop drinking. Without routine screening, patients often experience DT without warning. OBJECTIVE: Reduce the incidence of alcohol withdrawal advancing to DT, restraint use, and transfers to the intensive care unit (ICU) in patients with DT. DESIGN: In October 2009, the alcohol withdrawal team instituted a care management guideline used by all disciplines, which included tools for screening, assessment, and symptom management. Data were obtained from existing datasets for three quarters before and four quarters after implementation. Follow-up data were analyzed and showed a great deal of variability in transfers to the ICU and restraint use. Percentage of patients who developed DT showed a downward trend. MAIN OUTCOME MEASURES: Incidence of alcohol withdrawal advancing to DT and, in patients with DT, restraint use and transfers to the ICU. RESULTS: Initial data revealed a decrease in percentage of patients with alcohol withdrawal who experienced DT (16.4%-12.9%). In patients with DT, restraint use decreased (60.4%-44.4%) and transfers to the ICU decreased (21.6%-15%). Follow-up data indicated a continued downward trend in patients with DT. Changes were not statistically significant. Restraint use and ICU transfers maintained postimplementation levels initially but returned to preimplementation levels by third quarter 2012. CONCLUSION: Early identification of patients for potential alcohol withdrawal followed by a standardized treatment protocol using symptom-triggered dosing improved alcohol withdrawal management and outcomes.


Subject(s)
Alcohol Withdrawal Delirium/therapy , Critical Care/standards , Ethanol/adverse effects , Intensive Care Units , Patient Transfer , Restraint, Physical , Alcohol Withdrawal Delirium/prevention & control , Alcoholism , Clinical Protocols , Follow-Up Studies , Humans , Mass Screening , Substance Withdrawal Syndrome/therapy , Treatment Outcome
19.
Nat Commun ; 5: 3294, 2014.
Article in English | MEDLINE | ID: mdl-24534770

ABSTRACT

Oceanic mesoscale eddies contribute important horizontal heat and salt transports on a global scale. Here we show that eddy transports are mainly due to individual eddy movements. Theoretical and observational analyses indicate that cyclonic and anticyclonic eddies move westwards, and they also move polewards and equatorwards, respectively, owing to the ß of Earth's rotation. Temperature and salinity (T/S) anomalies inside individual eddies tend to move with eddies because of advective trapping of interior water parcels, so eddy movement causes heat and salt transports. Satellite altimeter sea surface height anomaly data are used to track individual eddies, and vertical profiles from co-located Argo floats are used to calculate T/S anomalies. The estimated meridional heat transport by eddy movement is similar in magnitude and spatial structure to previously published eddy covariance estimates from models, and the eddy heat and salt transports both are a sizeable fraction of their respective total transports.

20.
Proc Natl Acad Sci U S A ; 111(5): 1684-90, 2014 Feb 04.
Article in English | MEDLINE | ID: mdl-24443553

ABSTRACT

Despite the importance of uncertainties encountered in climate model simulations, the fundamental mechanisms at the origin of sensitive behavior of long-term model statistics remain unclear. Variability of turbulent flows in the atmosphere and oceans exhibits recurrent large-scale patterns. These patterns, while evolving irregularly in time, manifest characteristic frequencies across a large range of time scales, from intraseasonal through interdecadal. Based on modern spectral theory of chaotic and dissipative dynamical systems, the associated low-frequency variability may be formulated in terms of Ruelle-Pollicott (RP) resonances. RP resonances encode information on the nonlinear dynamics of the system, and an approach for estimating them--as filtered through an observable of the system--is proposed. This approach relies on an appropriate Markov representation of the dynamics associated with a given observable. It is shown that, within this representation, the spectral gap--defined as the distance between the subdominant RP resonance and the unit circle--plays a major role in the roughness of parameter dependences. The model statistics are the most sensitive for the smallest spectral gaps; such small gaps turn out to correspond to regimes where the low-frequency variability is more pronounced, whereas autocorrelations decay more slowly. The present approach is applied to analyze the rough parameter dependence encountered in key statistics of an El-Niño-Southern Oscillation model of intermediate complexity. Theoretical arguments, however, strongly suggest that such links between model sensitivity and the decay of correlation properties are not limited to this particular model and could hold much more generally.


Subject(s)
Climate , Models, Theoretical , El Nino-Southern Oscillation , Markov Chains , Nonlinear Dynamics , Spectrum Analysis , Stochastic Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...