Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(11): e0224288, 2019.
Article in English | MEDLINE | ID: mdl-31738797

ABSTRACT

Bioinformatics, a discipline that combines aspects of biology, statistics, mathematics, and computer science, is becoming increasingly important for biological research. However, bioinformatics instruction is not yet generally integrated into undergraduate life sciences curricula. To understand why we studied how bioinformatics is being included in biology education in the US by conducting a nationwide survey of faculty at two- and four-year institutions. The survey asked several open-ended questions that probed barriers to integration, the answers to which were analyzed using a mixed-methods approach. The barrier most frequently reported by the 1,260 respondents was lack of faculty expertise/training, but other deterrents-lack of student interest, overly-full curricula, and lack of student preparation-were also common. Interestingly, the barriers faculty face depended strongly on whether they are members of an underrepresented group and on the Carnegie Classification of their home institution. We were surprised to discover that the cohort of faculty who were awarded their terminal degree most recently reported the most preparation in bioinformatics but teach it at the lowest rate.


Subject(s)
Biology/education , Computational Biology/education , Curriculum , Faculty/statistics & numerical data , Female , Humans , Male , Motivation , Students/psychology , Surveys and Questionnaires/statistics & numerical data , United States
2.
Article in English | MEDLINE | ID: mdl-31160933

ABSTRACT

Bioinformatics brings together biology, mathematics, statistics, and computer science to analyze biological sequence information. Anyone with a computer, access to the Internet, and basic training in this field can contribute to genomics research. Yet many biology faculty feel they lack training in the use of bioinformatics tools and therefore include little bioinformatics content in their courses. To overcome this challenge, the Genome Solver Project was created to empower undergraduate faculty by offering training and resources for creating hands-on bioinformatics course materials. In this study, we show the results of one survey completed directly after the workshop and a further follow-up survey to gain insight into the impact the workshop had on faculty willingness to include bioinformatics content in their courses and what challenges they still faced. We also measured student performance at five different institutions using a 20-question multiple-choice quiz delivered before and after bioinformatics instruction. Data collected from 640 students at these five schools demonstrated student performance increased, suggesting that bioinformatics training workshops can be an effective means of encouraging faculty to engage in bioinformatics instruction and positively influence student learning.

3.
PLoS One ; 13(6): e0196878, 2018.
Article in English | MEDLINE | ID: mdl-29870542

ABSTRACT

Although bioinformatics is becoming increasingly central to research in the life sciences, bioinformatics skills and knowledge are not well integrated into undergraduate biology education. This curricular gap prevents biology students from harnessing the full potential of their education, limiting their career opportunities and slowing research innovation. To advance the integration of bioinformatics into life sciences education, a framework of core bioinformatics competencies is needed. To that end, we here report the results of a survey of biology faculty in the United States about teaching bioinformatics to undergraduate life scientists. Responses were received from 1,260 faculty representing institutions in all fifty states with a combined capacity to educate hundreds of thousands of students every year. Results indicate strong, widespread agreement that bioinformatics knowledge and skills are critical for undergraduate life scientists as well as considerable agreement about which skills are necessary. Perceptions of the importance of some skills varied with the respondent's degree of training, time since degree earned, and/or the Carnegie Classification of the respondent's institution. To assess which skills are currently being taught, we analyzed syllabi of courses with bioinformatics content submitted by survey respondents. Finally, we used the survey results, the analysis of the syllabi, and our collective research and teaching expertise to develop a set of bioinformatics core competencies for undergraduate biology students. These core competencies are intended to serve as a guide for institutions as they work to integrate bioinformatics into their life sciences curricula.


Subject(s)
Computational Biology/education , Mental Competency , Problem-Based Learning , Adolescent , Adult , Female , Humans , Male , United States
4.
Nurse Educ ; 36(1): 13-5, 2011.
Article in English | MEDLINE | ID: mdl-21135677

ABSTRACT

This project explored how an audience response system (clickers), combined with case-based questions, resulted in increased student engagement, attention, and participation in an introductory clinical nursing course. Clicker questions and ensuing discussion were designed to enable students to practice reasoning through patient situations before entering the clinical setting. Findings suggest that nuanced discussion of all possible answers encouraged students to think more deeply about their initial answers and opened them up to new reasoning processes.


Subject(s)
Attention , Audiovisual Aids , Education, Nursing, Baccalaureate/methods , Educational Measurement/methods , Problem-Based Learning/methods , Attitude , Humans , Program Evaluation , Students, Nursing , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...