Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J Lipid Res ; 65(3): 100514, 2024 03.
Article in English | MEDLINE | ID: mdl-38309418

ABSTRACT

Human genetic evidence suggests a protective role of loss-of-function variants in 17-beta hydroxysteroid dehydrogenase 13 (HSD17B13) for liver fibrotic diseases. Although there is limited preclinical experimental data on Hsd17b13 antisense oligonucleotide (ASO) or siRNA in a fibrosis model, several ASO and siRNA approaches are being tested clinically as potential therapies for nonalcoholic steatohepatitis (NASH). The aim of this study was to assess the therapeutic potential of Hsd17b13 ASO in a preclinical advanced NASH-like hepatic fibrosis in vivo model. In vitro testing on primary hepatocytes demonstrated that Hsd17b13 ASO exhibited strong efficacy and specificity for knockdown of the Hsd17b13 gene. In choline-deficient, L-amino acid-defined, HFD (CDAHFD)-induced steatotic and fibrotic mice, therapeutic administration of Hsd17b13 ASO resulted in a significant and dose-dependent reduction of hepatic Hsd17b13 gene expression. The CDAHFD group exhibited considerably elevated liver enzyme levels, hepatic steatosis score, hepatic fibrosis, and increased fibrotic and inflammatory gene expression, indicating an advanced NASH-like hepatic fibrosis phenotype. Although Hsd17b13 ASO therapy significantly affected hepatic steatosis, it had no effect on hepatic fibrosis. Our findings demonstrate, for the first time, that Hsd17b13 ASO effectively suppressed Hsd17b13 gene expression both in vitro and in vivo, and had a modulatory effect on hepatic steatosis in mice, but did not affect fibrosis in the CDAHFD mouse model of NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Mice , Disease Models, Animal , Liver/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/genetics , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/therapeutic use , RNA, Small Interfering/metabolism
2.
ACS Cent Sci ; 7(9): 1473-1485, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34584948

ABSTRACT

Phosphate linkages govern life as we know it. Their unique properties provide the foundation for many natural systems from cell biology and biosynthesis to the backbone of nucleic acids. Phosphates are ideal natural moieties; existing as ionized species in a stable P(V)-oxidation state, they are endowed with high stability but exhibit enzymatically unlockable potential. Despite intense interest in phosphorus catalysis and condensation chemistry, organic chemistry has not fully embraced the potential of P(V) reagents. To be sure, within the world of chemical oligonucleotide synthesis, modern approaches utilize P(III) reagent systems to create phosphate linkages and their analogs. In this Outlook, we present recent studies from our laboratories suggesting that numerous exciting opportunities for P(V) chemistry exist at the nexus of organic synthesis and biochemistry. Applications to the synthesis of stereopure antisense oligonucleotides, cyclic dinucleotides, methylphosphonates, and phosphines are reviewed as well as chemoselective modification to peptides, proteins, and nucleic acids. Finally, an outlook into what may be possible in the future with P(V) chemistry is previewed, suggesting these examples represent just the tip of the iceberg.

3.
Science ; 373(6560): 1265-1270, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34516793

ABSTRACT

The promise of gene-based therapies is being realized at an accelerated pace, with more than 155 active clinical trials and multiple U.S. Food and Drug Administration approvals for therapeutic oligonucleotides, by far most of which contain modified phosphate linkages. These unnatural linkages have desirable biological and physical properties but are often accessed with difficulty using phosphoramidite chemistry. We report a flexible and efficient [P(V)]­based platform that can install a wide variety of phosphate linkages at will into oligonucleotides. This approach uses readily accessible reagents and can install not only stereodefined or racemic thiophosphates but any combination of (S, R or rac)­PS with native phosphodiester (PO2) and phosphorodithioate (PS2) linkages into DNA and other modified nucleotide polymers. This platform easily accesses this diversity under a standardized coupling protocol with sustainably prepared, stable P(V) reagents.


Subject(s)
Oligonucleotides/chemical synthesis
4.
ACS Med Chem Lett ; 12(3): 404-412, 2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33738068

ABSTRACT

A new series with the tetrahydroisoquinoline-fused benzodiazepine (TBD) ring system combined with the surrogates of (1-methyl-1H-pyrrol-3-yl)benzene ("MPB") payloads were designed and executed for conjugation with a monoclonal antibody for anticancer therapeutics. DNA models helped in rationally identifying modifications of the "MPB" binding component and guided structure-activity relationship generation. This hybrid series of payloads exhibited excellent in vitro activity when tested against a panel of various cancer cell lines. One of the payloads was appended with a lysosome-cleavable peptide linker and conjugated with an anti-mesothelin antibody via a site-specific conjugation method mediated by the enzyme bacterial transglutaminase (BTGase). Antibody-drug conjugate (ADC) 50 demonstrated good plasma stability and lysosomal cleavage. A single intravenous dose of ADC 50 (5 or 10 nmol/kg) showed robust efficacy in an N87 gastric cancer xenograft model.

5.
J Med Chem ; 63(22): 13913-13950, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33155811

ABSTRACT

A series of tetrahydroisoquinoline-based benzodiazepine dimers were synthesized and tested for in vitro cytotoxicity against a panel of cancer cell lines. Structure-activity relationship investigation of various spacers guided by molecular modeling studies helped to identify compounds with picomolar activity. Payload 17 was conjugated to anti-mesothelin and anti-fucosylated monosialotetrahexosylganglioside (FucGM1) antibodies using lysosome-cleavable valine-citrulline dipeptide linkers via heterogeneous lysine conjugation and bacterial transglutaminase-mediated site-specific conjugation. In vitro, these antibody drug conjugates (ADCs) exhibited significant cytotoxic and target-mediated selectivity on human cancer cell lines. The pharmacokinetics and efficacy of these ADCs were further evaluated in gastric and lung cancer xenograft models in mice. Consistent pharmacokinetic profiles, high target specificity, and robust antitumor activity were observed in these models after a single dose of the ADC-46 (0.02 µmol/kg).


Subject(s)
Antibodies, Monoclonal/chemistry , Antineoplastic Agents/pharmacology , Benzodiazepines/chemistry , Drug Design , Immunoconjugates/pharmacology , Small Cell Lung Carcinoma/drug therapy , Stomach Neoplasms/drug therapy , Tetrahydroisoquinolines/chemistry , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Antineoplastic Agents/chemistry , Apoptosis , Benzodiazepines/metabolism , Cell Proliferation , Female , G(M1) Ganglioside/analogs & derivatives , G(M1) Ganglioside/immunology , GPI-Linked Proteins/immunology , Humans , Immunoconjugates/chemistry , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Mesothelin , Mice , Mice, SCID , Small Cell Lung Carcinoma/pathology , Stomach Neoplasms/pathology , Structure-Activity Relationship , Tetrahydroisoquinolines/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
6.
Mol Ther Nucleic Acids ; 19: 1290-1298, 2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32092825

ABSTRACT

Hundreds of dominant-negative myosin mutations have been identified that lead to hypertrophic cardiomyopathy, and the biomechanical link between mutation and disease is heterogeneous across this patient population. To increase the therapeutic feasibility of treating this diverse genetic population, we investigated the ability of locked nucleic acid (LNA)-modified antisense oligonucleotides (ASOs) to selectively knock down mutant myosin transcripts by targeting single-nucleotide polymorphisms (SNPs) that were found to be common in the myosin heavy chain 7 (MYH7) gene. We identified three SNPs in MYH7 and designed ASO libraries to selectively target either the reference or alternate MYH7 sequence. We identified ASOs that selectively knocked down either the reference or alternate allele at all three SNP regions. We also show allele-selective knockdown in a mouse model that was humanized on one allele. These results suggest that SNP-targeting ASOs are a promising therapeutic modality for treating cardiac pathology.

7.
Bioorg Med Chem Lett ; 30(3): 126856, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31870650

ABSTRACT

The objective of this Letter is to report the first (to our knowledge) in vivo proof of concept for a sulfenamide prodrug to orally deliver a poorly soluble drug containing a weakly-acidic NH-acid from a conventional solid dosage formulation. This proof of concept was established using BMS-708163 (1), a gamma secretase inhibitor containing a weakly acidic primary amide NH-acid as the chemical handle for attaching a series of thiol-based promoieties via a sulfenamide linkage. Aqueous stabilities and solubilities are reported for a series of six sulfenamide prodrugs (2-7) of 1. The sulfenamide prodrug containing the cysteine methyl ester promoiety (5) was chosen for a orally-dosed PK study in male beagle dog comparing a solubilized formulation of 1 against a solid dosage form of 5 in a cross-over fashion at an equivalent molar dose of 3 mg/kg. Prodrug 5 delivered essentially a superimposable PK profile of 1 compared to the solubilized formulation of 1, without any detectable exposure of 5 in systemic circulation.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Oxadiazoles/chemistry , Prodrugs/chemistry , Sulfamerazine/chemistry , Sulfonamides/chemistry , Administration, Oral , Amyloid Precursor Protein Secretases/metabolism , Animals , Capsules/chemistry , Dogs , Drug Stability , Half-Life , Male , Prodrugs/chemical synthesis , Prodrugs/pharmacokinetics , Solubility , Sulfamerazine/chemical synthesis , Sulfamerazine/pharmacokinetics
8.
Science ; 361(6408): 1234-1238, 2018 09 21.
Article in English | MEDLINE | ID: mdl-30072577

ABSTRACT

Phosphorothioate nucleotides have emerged as powerful pharmacological substitutes of their native phosphodiester analogs with important translational applications in antisense oligonucleotide (ASO) therapeutics and cyclic dinucleotide (CDN) synthesis. Stereocontrolled installation of this chiral motif has long been hampered by the systemic use of phosphorus(III) [P(III)]-based reagent systems as the sole practical means of oligonucleotide assembly. A fundamentally different approach is described herein: the invention of a P(V)-based reagent platform for programmable, traceless, diastereoselective phosphorus-sulfur incorporation. The power of this reagent system is demonstrated through the robust and stereocontrolled synthesis of various nucleotidic architectures, including ASOs and CDNs, via an efficient, inexpensive, and operationally simple protocol.


Subject(s)
Nucleotides/chemistry , Phosphorothioate Oligonucleotides/chemical synthesis , Genetic Therapy , Isomerism , Phosphorothioate Oligonucleotides/chemistry , Phosphorothioate Oligonucleotides/therapeutic use , Sulfur/chemistry
9.
Angew Chem Int Ed Engl ; 57(7): 1991-1994, 2018 02 12.
Article in English | MEDLINE | ID: mdl-29286556

ABSTRACT

Described herein is a synthetic strategy for the total synthesis of (±)-phomoidride D. This highly efficient and stereoselective approach provides rapid assembly of the carbocyclic core by way of a tandem phenolic oxidation/intramolecular Diels-Alder cycloaddition. A subsequent SmI2 -mediated cyclization cascade delivers an isotwistane intermediate poised for a Wharton fragmentation that unveils the requisite bicyclo[4.3.1]decene skeleton and sets the stage for synthesis completion.


Subject(s)
Maleic Anhydrides/chemical synthesis , Bridged Bicyclo Compounds/chemistry , Cyclization , Cycloaddition Reaction , Oxidation-Reduction , Stereoisomerism
11.
Eur J Pharmacol ; 807: 1-11, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28438647

ABSTRACT

The α7 nicotinic acetylcholine receptor is thought to play an important role in human cognition. Here we describe the in vivo effects of BMS-902483, a selective potent α7 nicotinic acetylcholine receptor partial agonist, in relationship to α7 nicotinic acetylcholine receptor occupancy. BMS-902483 has low nanomolar affinity for rat and human α7 nicotinic acetylcholine receptors and elicits currents in cells expressing human or rat α7 nicotinic acetylcholine receptors that are about 60% of the maximal acetylcholine response. BMS-902483 improved 24h novel object recognition memory in mice with a minimal effective dose (MED) of 0.1mg/kg and reversed MK-801-induced deficits in a rat attentional set-shifting model of executive function with an MED of 3mg/kg. Enhancement of novel object recognition was blocked by the silent α7 nicotinic acetylcholine receptor agonist, NS6740, demonstrating that activity of BMS-902483 was mediated by α7 nicotinic acetylcholine receptors. BMS-902483 also reversed ketamine-induced deficits in auditory gating in rats, and enhanced ex vivo hippocampal long-term potentiation examined 24h after dosing in mice. Results from an ex vivo brain homogenate binding assay showed that α7 receptor occupancy ranged from 64% (novel object recognition) to ~90% (set shift and gating) at the MED for behavioral and sensory processing effects of BMS-902483.


Subject(s)
Cognition/drug effects , Drug Partial Agonism , Nicotinic Agonists/pharmacology , Quinuclidines/pharmacology , Sensory Gating/drug effects , Spiro Compounds/pharmacology , alpha7 Nicotinic Acetylcholine Receptor/agonists , Animals , Attention/drug effects , Dose-Response Relationship, Drug , HEK293 Cells , Hippocampus/drug effects , Hippocampus/physiology , Humans , Long-Term Potentiation/drug effects , Male , Memory/drug effects , Mice , Rats
12.
ACS Med Chem Lett ; 8(3): 366-371, 2017 Mar 09.
Article in English | MEDLINE | ID: mdl-28337332

ABSTRACT

The therapeutic treatment of negative symptoms and cognitive dysfunction associated with schizophrenia is a significant unmet medical need. Preclinical literature indicates that α7 neuronal nicotinic acetylcholine (nACh) receptor agonists may provide an effective approach to treating cognitive dysfunction in schizophrenia. We report herein the discovery and evaluation of 1c (BMS-933043), a novel and potent α7 nACh receptor partial agonist with high selectivity against other nicotinic acetylcholine receptor subtypes (>100-fold) and the 5-HT3A receptor (>300-fold). In vivo activity was demonstrated in a preclinical model of cognitive impairment, mouse novel object recognition. BMS-933043 has completed Phase I clinical trials.

13.
Bioorg Med Chem Lett ; 27(5): 1261-1266, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28169167

ABSTRACT

Quinuclidine-containing spirooxazolines, as described in the previous report in this series, were demonstrated to have utility as α7 nicotinic acetylcholine receptor (α7 nAChR) partial agonists. In this work, the SAR of this chemotype was expanded to include an array of diazine heterocyclic substitutions. Many of the heterocyclic analogs were potent partial agonists of the α7 receptor, selective against other nicotinic receptors and the serotinergic 5HT3A receptor. (1'S,3'R,4'S)-N-(6-phenylpyrimidin-4-yl)-4H-1'-azaspiro[oxazole-5,3'-bicyclo[2.2.2]octan]-2-amine, a potent and selective α7 nAChR partial agonist, was demonstrated to improve cognition in the mouse novel object recognition (NOR) model of episodic memory.


Subject(s)
Drug Design , Octanes/chemical synthesis , Pyrimidines/chemical synthesis , Spiro Compounds/chemical synthesis , alpha7 Nicotinic Acetylcholine Receptor/agonists , Animals , Cognition/drug effects , Cognition Disorders/drug therapy , Disease Models, Animal , Mice , Molecular Structure , Octanes/chemistry , Octanes/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Structure-Activity Relationship
14.
ACS Med Chem Lett ; 8(1): 133-137, 2017 Jan 12.
Article in English | MEDLINE | ID: mdl-28105289

ABSTRACT

We describe the synthesis of quinuclidine-containing spiroimidates and their utility as α7 nicotinic acetylcholine receptor (nAChR) partial agonists. A convergent synthetic route allowed for rapid SAR investigation and provided a diverse set of fused 6,5-heteroaryl analogs. Two potent and selective α7 nAChR partial agonists, (1'S,3'R,4'S)-N-(7-bromopyrrolo[2,1-f][1,2,4]triazin-4-yl)-4H-1'-azaspiro[oxazole-5,3'-bicyclo[2.2.2]octan]-2-amine (20) and (1'S,3'R,4'S)-N-(7-chloropyrrolo[2,1-f][1,2,4]triazin-4-yl)-4H-1'-azaspiro[oxazole-5,3'-bicyclo[2.2.2]octan]-2-amine (21), were identified. Both agonists improved cognition in a preclinical rodent model of learning and memory. Additionally, 5-HT3A receptor SAR suggested the presence of a steric site that when engaged led to significant loss of affinity at that receptor.

15.
Eur J Pharmacol ; 799: 16-25, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-28132910

ABSTRACT

The alpha7 (α7) nicotinic acetylcholine receptor is a therapeutic target for cognitive disorders. Here we describe 3-(3,4-difluorophenyl)-N-(1-(6-(4-(pyridin-2-yl)piperazin-1-yl)pyrazin-2-yl)ethyl)propanamide (B-973), a novel piperazine-containing molecule that acts as a positive allosteric modulator of the α7 receptor. We characterize the action of B-973 on the α7 receptor using electrophysiology and radioligand binding. At 0.1mM acetylcholine, 1µM B-973 potentiated peak acetylcholine-induced currents 6-fold relative to maximal acetylcholine (3mM) and slowed channel desensitization, resulting in a 6900-fold increase in charge transfer. The EC50 of B-973 was approximately 0.3µM at acetylcholine concentrations ranging from 0.03 to 3mM. At a concentration of 1µM, B-973 shifted the acetylcholine EC50 of peak currents from 0.30mM in control to 0.007mM. B-973 slowed channel deactivation upon acetylcholine removal (τ=50s) and increased the affinity of the α7 agonist [3H]A-585539. In the absence of exogenously added acetylcholine, application of B-973 at concentrations >1µM induced large methyllycaconitine-sensitive currents, suggesting B-973 can function as an Ago-PAM at high concentrations. B-973 will be a useful probe for investigating the biological consequences of increasing α7 receptor activity through allosteric modulation.


Subject(s)
Phenylpropionates/pharmacology , Piperazines/pharmacology , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Acetylcholine/pharmacology , Allosteric Regulation/drug effects , Dose-Response Relationship, Drug , Drug Discovery , HEK293 Cells , Humans , Kinetics
16.
J Med Chem ; 59(24): 11171-11181, 2016 12 22.
Article in English | MEDLINE | ID: mdl-27958732

ABSTRACT

The design and synthesis of a series of quinuclidine-containing spirooxazolidines ("spiroimidates") and their utility as α7 nicotinic acetylcholine receptor partial agonists are described. Selected members of the series demonstrated excellent selectivity for α7 over the highly homologous 5-HT3A receptor. Modification of the N-spiroimidate heterocycle substituent led to (1S,2R,4S)-N-isoquinolin-3-yl)-4'H-4-azaspiro[bicyclo[2.2.2]octane-2,5'oxazol]-2'-amine (BMS-902483), a potent α7 partial agonist, which improved cognition in preclinical rodent models.


Subject(s)
Cyclooctanes/pharmacology , Drug Design , Nicotinic Agonists/pharmacology , Spiro Compounds/pharmacology , alpha7 Nicotinic Acetylcholine Receptor/antagonists & inhibitors , Animals , Cyclooctanes/chemical synthesis , Cyclooctanes/chemistry , Dose-Response Relationship, Drug , Humans , Maze Learning/drug effects , Mice , Molecular Structure , Nicotinic Agonists/chemical synthesis , Nicotinic Agonists/chemistry , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Structure-Activity Relationship
17.
Org Lett ; 17(24): 6002-5, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26598965

ABSTRACT

A new annulation method for the preparation of the imidazo[1,2-a]pyridine ring system under mild conditions is presented. Treatment of a 2-aminopyridine with a dimethylketal tosylate in acetonitrile at elevated temperature (80-140 °C) in the presence of catalytic Sc(OTf)3 provides the imidazo[1,2-a]pyridine product in good yield. The annulation method is broadly applicable to electron-poor 2-aminopyridines and displays a complementary profile to the classic preparation of the imidazo[1,2-a]pyridine ring system by reaction of a bromoketone with electron-rich and -neutral substrates. The scope of the process and mechanistic considerations are discussed.

18.
Org Lett ; 16(17): 4444-7, 2014 Sep 05.
Article in English | MEDLINE | ID: mdl-25140991

ABSTRACT

An operationally simple chemoselective transfer hydrogenation of alkenes using ruthenium metathesis catalysts is presented. Of great practicality, the transfer hydrogenation reagents can be added directly to a metathesis reaction and effect hydrogenation of the product alkene in a single pot at ambient temperature without the need to seal the vessel to prevent hydrogen gas escape. The reduction is applicable to a range of alkenes and can be performed in the presence of aryl halides and benzyl groups, a notable weakness of Pd-catalyzed hydrogenations. Scope and mechanistic considerations are presented.


Subject(s)
Alkenes/chemistry , Catalysis , Combinatorial Chemistry Techniques , Cyclization , Hydrogenation , Molecular Structure , Ruthenium/chemistry
19.
Psychopharmacology (Berl) ; 231(4): 673-83, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24057763

ABSTRACT

RATIONALE: Attentional set shifting, a measure of executive function, is impaired in schizophrenia patients. Current standard of care has little therapeutic benefit for treating cognitive dysfunction in schizophrenia; therefore, novel drugs and animal models for testing novel therapies are needed. The NMDA receptor antagonist, MK-801, produces deficits in a rat maze-based set-shifting paradigm, an effect which parallels deficits observed on tests of executive function in schizophrenia patients. Alpha7 nicotinic acetylcholine receptor (nAChR) agonists, currently under clinical development by several companies, show promise in treating cognitive symptoms in schizophrenia patients and can improve cognition in various animal models. OBJECTIVES: The objectives of the present study were to determine whether the MK-801 deficit in set shifting could be reproduced in a drug discovery setting and to determine whether cognitive improvement could be detected for the first time in this task with alpha7 nAChR agonists. RESULTS: The data presented here replicate findings that a systemic injection of the NMDA receptor antagonist MK-801 can induce a deficit in set shifting in rats. Furthermore, the deficit could be reversed by the atypical antipsychotic clozapine as well as by several alpha7 nAch receptor agonists (SSR-180711, PNU-282987, GTS-21) with varying in vitro properties. CONCLUSIONS: Results indicate that the MK-801 set-shift assay is a useful preclinical tool for measuring prefrontal cortical function in rodents and can be used to identify novel mechanisms for the potential treatment of cognitive deficits in schizophrenia.


Subject(s)
Antipsychotic Agents/pharmacology , Attention/drug effects , Cognition Disorders/drug therapy , Set, Psychology , alpha7 Nicotinic Acetylcholine Receptor/agonists , Animals , Benzamides/pharmacology , Benzylidene Compounds/pharmacology , Bridged Bicyclo Compounds/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Clozapine/pharmacology , Cognition Disorders/chemically induced , Cognition Disorders/etiology , Dizocilpine Maleate , Dose-Response Relationship, Drug , Drug Discovery/methods , Male , Maze Learning/drug effects , Neuropsychological Tests , Pyridines/pharmacology , Rats , Rats, Sprague-Dawley , Schizophrenia/complications , Schizophrenia/drug therapy
20.
Bioorg Med Chem Lett ; 23(6): 1684-8, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23414838

ABSTRACT

High throughput screening led to the identification of a novel series of quinolone α7 nicotinic acetylcholine receptor (nAChR) agonists. Optimization of an HTS hit (1) led to 4-phenyl-1-(quinuclidin-3-ylmethyl)quinolin-2(1H)-one, which was found to be potent and selective. Poor brain penetrance in this series was attributed to transporter-mediated efflux, which was in turn due to high pKa. A novel 4-fluoroquinuclidine significantly lowered the pKa of the quinuclidine moiety, reducing efflux as measured by a Caco-2 assay.


Subject(s)
Nicotinic Agonists/chemistry , Quinolones/chemistry , Receptors, Nicotinic/chemistry , Animals , Caco-2 Cells , Drug Evaluation, Preclinical , Humans , Kinetics , Nicotinic Agonists/chemical synthesis , Nicotinic Agonists/metabolism , Quinolones/chemical synthesis , Quinolones/metabolism , Rats , Receptors, Nicotinic/metabolism , Structure-Activity Relationship , alpha7 Nicotinic Acetylcholine Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...