Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Article in English | MEDLINE | ID: mdl-34753820

ABSTRACT

The COVID-19 global pandemic and associated government lockdowns dramatically altered human activity, providing a window into how changes in individual behavior, enacted en masse, impact atmospheric composition. The resulting reductions in anthropogenic activity represent an unprecedented event that yields a glimpse into a future where emissions to the atmosphere are reduced. Furthermore, the abrupt reduction in emissions during the lockdown periods led to clearly observable changes in atmospheric composition, which provide direct insight into feedbacks between the Earth system and human activity. While air pollutants and greenhouse gases share many common anthropogenic sources, there is a sharp difference in the response of their atmospheric concentrations to COVID-19 emissions changes, due in large part to their different lifetimes. Here, we discuss several key takeaways from modeling and observational studies. First, despite dramatic declines in mobility and associated vehicular emissions, the atmospheric growth rates of greenhouse gases were not slowed, in part due to decreased ocean uptake of CO2 and a likely increase in CH4 lifetime from reduced NO x emissions. Second, the response of O3 to decreased NO x emissions showed significant spatial and temporal variability, due to differing chemical regimes around the world. Finally, the overall response of atmospheric composition to emissions changes is heavily modulated by factors including carbon-cycle feedbacks to CH4 and CO2, background pollutant levels, the timing and location of emissions changes, and climate feedbacks on air quality, such as wildfires and the ozone climate penalty.


Subject(s)
Air Pollution , Atmosphere/chemistry , COVID-19/psychology , Greenhouse Gases , Models, Theoretical , COVID-19/epidemiology , Carbon Dioxide , Climate Change , Humans , Methane , Nitrogen Oxides , Ozone
2.
Geophys Res Lett ; 48(6): e2020GL092263, 2021 Mar.
Article in English | MEDLINE | ID: mdl-34230713

ABSTRACT

The decline in global emissions of carbon dioxide due to the COVID-19 pandemic provides a unique opportunity to investigate the sensitivity of the global carbon cycle and climate system to emissions reductions. Recent efforts to study the response to these emissions declines has not addressed their impact on the ocean, yet ocean carbon absorption is particularly susceptible to changing atmospheric carbon concentrations. Here, we use ensembles of simulations conducted with an Earth system model to explore the potential detection of COVID-related emissions reductions in the partial pressure difference in carbon dioxide between the surface ocean and overlying atmosphere (ΔpCO2), a quantity that is regularly measured. We find a unique fingerprint in global-scale ΔpCO2 that is attributable to COVID, though the fingerprint is difficult to detect in individual model realizations unless we force the model with a scenario that has four times the observed emissions reduction.

3.
Nat Commun ; 11(1): 1125, 2020 02 28.
Article in English | MEDLINE | ID: mdl-32111850

ABSTRACT

The primary productivity of the Southern Ocean ecosystem is limited by iron availability. Away from benthic and aeolian sources, iron reaches phytoplankton primarily when iron-rich subsurface waters enter the euphotic zone. Here, eddy-resolving physical/biogeochemical simulations of a seasonally-forced, open-Southern-Ocean ecosystem reveal that mesoscale and submesoscale isopycnal stirring effects a cross-mixed-layer-base transport of iron that sustains primary productivity. The eddy-driven iron supply and consequently productivity increase with model resolution. We show the eddy flux can be represented by specific well-tuned eddy parametrizations. Since eddy mixing rates are sensitive to wind forcing and large-scale hydrographic changes, these findings suggest a new mechanism for modulating the Southern Ocean biological pump on climate timescales.

4.
Ecol Appl ; 28(3): 749-760, 2018 04.
Article in English | MEDLINE | ID: mdl-29509310

ABSTRACT

The biodiversity and high productivity of coastal terrestrial and aquatic habitats are the foundation for important benefits to human societies around the world. These globally distributed habitats need frequent and broad systematic assessments, but field surveys only cover a small fraction of these areas. Satellite-based sensors can repeatedly record the visible and near-infrared reflectance spectra that contain the absorption, scattering, and fluorescence signatures of functional phytoplankton groups, colored dissolved matter, and particulate matter near the surface ocean, and of biologically structured habitats (floating and emergent vegetation, benthic habitats like coral, seagrass, and algae). These measures can be incorporated into Essential Biodiversity Variables (EBVs), including the distribution, abundance, and traits of groups of species populations, and used to evaluate habitat fragmentation. However, current and planned satellites are not designed to observe the EBVs that change rapidly with extreme tides, salinity, temperatures, storms, pollution, or physical habitat destruction over scales relevant to human activity. Making these observations requires a new generation of satellite sensors able to sample with these combined characteristics: (1) spatial resolution on the order of 30 to 100-m pixels or smaller; (2) spectral resolution on the order of 5 nm in the visible and 10 nm in the short-wave infrared spectrum (or at least two or more bands at 1,030, 1,240, 1,630, 2,125, and/or 2,260 nm) for atmospheric correction and aquatic and vegetation assessments; (3) radiometric quality with signal to noise ratios (SNR) above 800 (relative to signal levels typical of the open ocean), 14-bit digitization, absolute radiometric calibration <2%, relative calibration of 0.2%, polarization sensitivity <1%, high radiometric stability and linearity, and operations designed to minimize sunglint; and (4) temporal resolution of hours to days. We refer to these combined specifications as H4 imaging. Enabling H4 imaging is vital for the conservation and management of global biodiversity and ecosystem services, including food provisioning and water security. An agile satellite in a 3-d repeat low-Earth orbit could sample 30-km swath images of several hundred coastal habitats daily. Nine H4 satellites would provide weekly coverage of global coastal zones. Such satellite constellations are now feasible and are used in various applications.


Subject(s)
Biodiversity , Remote Sensing Technology/instrumentation , Oceans and Seas , Phytoplankton
5.
Ann Rev Mar Sci ; 9: 125-150, 2017 01 03.
Article in English | MEDLINE | ID: mdl-27620831

ABSTRACT

Since preindustrial times, the ocean has removed from the atmosphere 41% of the carbon emitted by human industrial activities. Despite significant uncertainties, the balance of evidence indicates that the globally integrated rate of ocean carbon uptake is increasing in response to increasing atmospheric CO2 concentrations. The El Niño-Southern Oscillation in the equatorial Pacific dominates interannual variability of the globally integrated sink. Modes of climate variability in high latitudes are correlated with variability in regional carbon sinks, but mechanistic understanding is incomplete. Regional sink variability, combined with sparse sampling, means that the growing oceanic sink cannot yet be directly detected from available surface data. Accurate and precise shipboard observations need to be continued and increasingly complemented with autonomous observations. These data, together with a variety of mechanistic and diagnostic models, are needed for better understanding, long-term monitoring, and future projections of this critical climate regulation service.


Subject(s)
Carbon Sequestration , El Nino-Southern Oscillation , Oceans and Seas , Atmosphere , Carbon Dioxide
6.
Nature ; 530(7591): 469-72, 2016 Feb 25.
Article in English | MEDLINE | ID: mdl-26911782

ABSTRACT

The ocean has absorbed 41 per cent of all anthropogenic carbon emitted as a result of fossil fuel burning and cement manufacture. The magnitude and the large-scale distribution of the ocean carbon sink is well quantified for recent decades. In contrast, temporal changes in the oceanic carbon sink remain poorly understood. It has proved difficult to distinguish between air-to-sea carbon flux trends that are due to anthropogenic climate change and those due to internal climate variability. Here we use a modelling approach that allows for this separation, revealing how the ocean carbon sink may be expected to change throughout this century in different oceanic regions. Our findings suggest that, owing to large internal climate variability, it is unlikely that changes in the rate of anthropogenic carbon uptake can be directly observed in most oceanic regions at present, but that this may become possible between 2020 and 2050 in some regions.


Subject(s)
Carbon Dioxide/analysis , Carbon Sequestration , Climate Change/statistics & numerical data , Observation , Seawater/chemistry , Atmosphere/chemistry , Carbon Cycle , Ecosystem , Human Activities , Models, Theoretical , Oceans and Seas , Time Factors
7.
Environ Sci Technol ; 39(7): 1954-61, 2005 Apr 01.
Article in English | MEDLINE | ID: mdl-15871223

ABSTRACT

Complex sociopolitical, economic, and geographical realities cause the 20 million residents of Mexico City to suffer from some of the worst air pollution conditions in the world. Greenhouse gas emissions from the city are also substantial, and opportunities for joint local-global air pollution control are being sought. Although a plethora of measures to improve local air quality and reduce greenhouse gas emissions have been proposed for Mexico City, resources are not available for implementation of all proposed controls and thus prioritization must occur. Yet policy makers often do not conduct comprehensive quantitative analyses to inform these decisions. We reanalyze a subset of currently proposed control measures, and derive cost and health benefit estimates that are directly comparable. This study illustrates that improved quantitative analysis can change implementation prioritization for air pollution and greenhouse gas control measures in Mexico City.


Subject(s)
Air Pollution/prevention & control , Conservation of Natural Resources/legislation & jurisprudence , Greenhouse Effect , Models, Theoretical , Public Health , Public Policy , Conservation of Natural Resources/trends , Cost-Benefit Analysis , Mexico , Vehicle Emissions/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...