Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Front Immunol ; 14: 1275361, 2023.
Article in English | MEDLINE | ID: mdl-38077374

ABSTRACT

Serum biomarkers are the gold standard in non-invasive disease diagnosis and have tremendous potential as prognostic and theranostic tools for patient stratification. Circulating levels of extracellular matrix molecules are gaining traction as an easily accessible means to assess tissue pathology. However, matrix molecules are large, multimodular proteins that are subject to a vast array of post-transcriptional and post-translational modifications. These modifications often occur in a tissue- and/or disease-specific manner, generating hundreds of different variants, each with distinct biological roles. Whilst this complexity can offer unique insight into disease processes, it also has the potential to confound biomarker studies. Tenascin-C is a pro-inflammatory matrix protein expressed at low levels in most healthy tissues but elevated in, and associated with the pathogenesis of, a wide range of autoimmune diseases, fibrosis, and cancer. Analysis of circulating tenascin-C has been widely explored as a disease biomarker. Hundreds of different tenascin-C isoforms can be generated by alternative splicing, and this protein is also modified by glycosylation and citrullination. Current enzyme-linked immunosorbent assays (ELISA) are used to measure serum tenascin-C using antibodies, recognising sites within domains that are alternatively spliced. These studies, therefore, report only levels of specific isoforms that contain these domains, and studies on the detection of total tenascin-C are lacking. As such, circulating tenascin-C levels may be underestimated and/or biologically relevant isoforms overlooked. We developed a highly specific and sensitive ELISA measuring total tenascin-C down to 0.78ng/ml, using antibodies that recognise sites in constitutively expressed domains. In cohorts of people with different inflammatory and musculoskeletal diseases, levels of splice-specific tenascin-C variants were lower than and distributed differently from total tenascin-C. Neither total nor splice-specific tenascin-C levels correlated with the presence of autoantibodies to citrullinated tenascin-C in rheumatoid arthritis (RA) patients. Elevated tenascin-C was not restricted to any one disease and levels were heterogeneous amongst patients with the same disease. These data confirm that its upregulation is not disease-specific, instead suggest that different molecular endotypes or disease stages exist in which pathology is associated with, or independent of, tenascin-C. This immunoassay provides a novel tool for the detection of total tenascin-C that is critical for further biomarker studies. Differences between the distribution of tenascin-C variants and total tenascin-C have implications for the interpretation of studies using isoform-targeted assays. These data highlight the importance of assay design for the detection of multimodular matrix molecules and reveal that there is still much to learn about the intriguingly complex biological roles of distinct matrix proteoforms.


Subject(s)
Extracellular Matrix , Tenascin , Humans , Tenascin/metabolism , Extracellular Matrix/metabolism , Protein Isoforms , Biomarkers , Autoantibodies
2.
Hum Gene Ther ; 33(17-18): 893-912, 2022 09.
Article in English | MEDLINE | ID: mdl-36074947

ABSTRACT

The prospect of gene therapy for inherited and acquired respiratory disease has energized the research community since the 1980s, with cystic fibrosis, as a monogenic disorder, driving early efforts to develop effective strategies. The fact that there are still no approved gene therapy products for the lung, despite many early phase clinical trials, illustrates the scale of the challenge: In the 1990s, first-generation non-viral and viral vector systems demonstrated proof-of-concept but low efficacy. Since then, there has been steady progress toward improved vectors with the capacity to overcome at least some of the formidable barriers presented by the lung. In addition, the inclusion of features such as codon optimization and promoters providing long-term expression have improved the expression characteristics of therapeutic transgenes. Early approaches were based on gene addition, where a new DNA copy of a gene is introduced to complement a genetic mutation: however, the advent of RNA-based products that can directly express a therapeutic protein or manipulate gene expression, together with the expanding range of tools for gene editing, has stimulated the development of alternative approaches. This review discusses the range of vector systems being evaluated for lung delivery; the variety of cargoes they deliver, including DNA, antisense oligonucleotides, messenger RNA (mRNA), small interfering RNA (siRNA), and peptide nucleic acids; and exemplifies progress in selected respiratory disease indications.


Subject(s)
Peptide Nucleic Acids , DNA , Gene Transfer Techniques , Genetic Therapy/methods , Genetic Vectors/genetics , Oligonucleotides, Antisense , RNA, Messenger , RNA, Small Interfering/genetics
3.
Matrix Biol Plus ; 14: 100112, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35669358

ABSTRACT

Inflammatory Bowel Disease (IBD) is a grouping of chronic inflammatory disorders of the gut. Tenascin-C is a pro-inflammatory, extracellular matrix protein found upregulated in IBD patients and whilst a pathological driver of chronic inflammation, its precise role in the etiology of IBD is unknown. To study tenascin-C's role in colitis pathology we investigated its expression in a murine model of IBD. Wild-type (WT) or tenascin-C knockout (KO) male mice were left untreated or treated with dextran sodium sulphate (DSS) in their drinking water. Tenascin-C was upregulated at the mRNA level in the colitic distal colon of day eight DSS treated mice, coinciding with significant increases in gross and histological pathology. Immunohistochemistry localized this increase in tenascin-C to areas of inflammation and ulceration in the mucosa. Tenascin-C KO mice exhibited reduced gross pathology in comparison. These differences also extended to the histopathological level where reduced colonic inflammation and tissue damage were found in KO compared to WT mice. Furthermore, the severity of the distal colon lesions were less in the KO mice after 17 days of recovery from DSS treatment. This study demonstrates a role for tenascin-C as a driver of inflammatory pathology in a murine model of IBD and thus suggests neutralizing its pro-inflammatory activity could be explored as a therapeutic strategy for treating IBD.

4.
Anim Microbiome ; 3(1): 70, 2021 Oct 09.
Article in English | MEDLINE | ID: mdl-34627407

ABSTRACT

BACKGROUND: Equine grass sickness (EGS) is a multiple systems neuropathy of grazing horses of unknown aetiology. An apparently identical disease occurs in cats, dogs, rabbits, hares, sheep, alpacas and llamas. Many of the risk factors for EGS are consistent with it being a pasture mycotoxicosis. To identify potential causal fungi, the gastrointestinal mycobiota of EGS horses were evaluated using targeted amplicon sequencing, and compared with those of two control groups. Samples were collected post mortem from up to 5 sites in the gastrointestinal tracts of EGS horses (EGS group; 150 samples from 54 horses) and from control horses that were not grazing EGS pastures and that had been euthanased for reasons other than neurologic and gastrointestinal diseases (CTRL group; 67 samples from 31 horses). Faecal samples were also collected from healthy control horses that were co-grazing pastures with EGS horses at disease onset (CoG group; 48 samples from 48 horses). RESULTS: Mycobiota at all 5 gastrointestinal sites comprised large numbers of fungi exhibiting diverse taxonomy, growth morphology, trophic mode and ecological guild. FUNGuild analysis parsed most phylotypes as ingested environmental microfungi, agaricoids and yeasts, with only 1% as gastrointestinal adapted animal endosymbionts. Mycobiota richness varied throughout the gastrointestinal tract and was greater in EGS horses. There were significant inter-group and inter-site differences in mycobiota structure. A large number of phylotypes were differentially abundant among groups. Key phylotypes (n = 56) associated with EGS were identified that had high abundance and high prevalence in EGS samples, significantly increased abundance in EGS samples, and were important determinants of the inter-group differences in mycobiota structure. Many key phylotypes were extremophiles and/or were predicted to produce cytotoxic and/or neurotoxic extrolites. CONCLUSIONS: This is the first reported molecular characterisation of the gastrointestinal mycobiota of grazing horses. Key phylotypes associated with EGS were identified. Further work is required to determine whether neurotoxic extrolites from key phylotypes contribute to EGS aetiology or whether the association of key phylotypes and EGS is a consequence of disease or is non-causal.

6.
Vet Res ; 51(1): 2, 2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31924278

ABSTRACT

The avian respiratory tract is a common entry route for many pathogens and an important delivery route for vaccination in the poultry industry. Immune responses in the avian lung have mostly been studied in vivo due to the lack of robust, relevant in vitro and ex vivo models mimicking the microenvironment. Precision-cut lung slices (PCLS) have the major advantages of maintaining the 3-dimensional architecture of the lung and includes heterogeneous cell populations. PCLS have been obtained from a number of mammalian species and from chicken embryos. However, as the embryonic lung is physiologically undifferentiated and immunologically immature, it is less suitable to examine complex host-pathogen interactions including antimicrobial responses. Here we prepared PCLS from immunologically mature chicken lungs, tested different culture conditions, and found that serum supplementation has a detrimental effect on the quality of PCLS. Viable cells in PCLS remained present for ≥ 40 days, as determined by viability assays and sustained motility of fluorescent mononuclear phagocytic cells. The PCLS were responsive to lipopolysaccharide stimulation, which induced the release of nitric oxide, IL-1ß, type I interferons and IL-10. Mononuclear phagocytes within the tissue maintained phagocytic activity, with live cell imaging capturing interactions with latex beads and an avian pathogenic Escherichia coli strain. Finally, the PCLS were also shown to be permissive to infection with low pathogenic avian influenza viruses. Taken together, immunologically mature chicken PCLS provide a suitable model to simulate live organ responsiveness and cell dynamics, which can be readily exploited to examine host-pathogen interactions and inflammatory responses.


Subject(s)
Chickens , Host-Pathogen Interactions/immunology , Lung/immunology , Poultry Diseases/immunology , Veterinary Medicine/methods , Animals , Chickens/immunology , Lipopolysaccharides/metabolism , Lung/microbiology , Lung/parasitology , Poultry Diseases/microbiology , Poultry Diseases/parasitology
7.
Sci Rep ; 8(1): 13316, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30190567

ABSTRACT

Methods to protect against radiation-induced lung injury (RILI) will facilitate the development of more effective radio-therapeutic protocols for lung cancer and may provide the means to protect the wider population in the event of a deliberate or accidental nuclear or radiological event. We hypothesised that supplementing lipid membranes through nebulization of synthetic lamellar lipids would mitigate RILI. Following pre-treatment with either nebulised lamellar lipids or saline, anaesthetised sheep were prescribed fractionated radiotherapy (30 Gray (Gy) total dose in five 6 Gy fractions at 3-4 days intervals) to a defined unilateral lung volume. Gross pathology in radio-exposed lung 37 days after the first radiation treatment was consistent between treatment groups and consisted of deep red congestion evident on the pleural surface and firmness on palpation. Consistent histopathological features in radio-exposed lung were subpleural, periarteriolar and peribronchial intra-alveolar oedema, alveolar fibrosis, interstitial pneumonia and type II pneumocyte hyperplasia. The synthetic lamellar lipids abrogated radiation-induced alveolar fibrosis and reduced alpha-smooth muscle actin (ASMA) expression in radio-exposed lung compared to saline treated sheep. Administration of synthetic lamellar lipids was also associated with an increased number of cells expressing dendritic cell-lysosomal associated membrane protein throughout the lung.


Subject(s)
Lipids/pharmacology , Pulmonary Alveoli , Radiation Injuries, Experimental , Radiation Pneumonitis , Administration, Inhalation , Animals , Female , Male , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/pathology , Radiation Injuries, Experimental/drug therapy , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/pathology , Radiation Pneumonitis/drug therapy , Radiation Pneumonitis/metabolism , Radiation Pneumonitis/pathology , Sheep
8.
PLoS One ; 12(11): e0188455, 2017.
Article in English | MEDLINE | ID: mdl-29166670

ABSTRACT

In this era of next generation sequencing technologies it is now possible to characterise the chicken respiratory microbiota without the biases inherent to traditional culturing techniques. However, little research has been performed in this area. In this study we characterise and compare buccal, nasal and lung microbiota samples from chickens in three different age groups using 16S rRNA gene analysis. Buccal and nasal swabs were taken from birds aged 2 days (n = 5), 3 weeks (n = 5) and 30 months (n = 6). Bronchoalveolar lavage (BAL) samples were also collected alongside reagent only controls. DNA was extracted from these samples and the V2-V3 region of the 16S rRNA gene was amplified and sequenced. Quality control and OTU clustering were performed in mothur. Bacterial DNA was quantified using qPCR, amplifying the V3 region of the 16S rRNA gene. We found significant differences between the quantity and types of bacteria sampled at the three different respiratory sites. We also found significant differences in the composition, richness and diversity of the bacterial communities in buccal, nasal and BAL fluid samples between age groups. We identified several bacteria which had previously been isolated from the chicken respiratory tract in culture based studies, including lactobacilli and staphylococci. However, we also identified bacteria which have not previously been cultured from the respiratory tract of the healthy chicken. We conclude that our study can be used as a baseline that future chicken respiratory microbiota studies can build upon.


Subject(s)
Aging/physiology , Chickens/microbiology , Lung/microbiology , Microbiota , Animals , Bacteria/metabolism , Biodiversity , Bronchoalveolar Lavage Fluid/microbiology , Cluster Analysis , Mouth Mucosa/microbiology , Nose/microbiology , Principal Component Analysis , Quality Control
9.
Microbiome ; 5(1): 145, 2017 10 27.
Article in English | MEDLINE | ID: mdl-29078799

ABSTRACT

BACKGROUND: Recently, the importance of the lung microbiota during health and disease has been examined in humans and in small animal models. Whilst sheep have been proposed as an appropriate large animal model for studying the pathophysiology of a number of important human respiratory diseases, it is clearly important to continually define the limits of agreement between these systems as new concepts emerge. In humans, it has recently been established that the lung microbiota is seeded by microbes from the oral cavity. We sought to determine whether the same was true in sheep. RESULTS: We took lung fluid and upper aerodigestive tract (oropharyngeal) swab samples from 40 lambs (7 weeks old). DNA extraction was performed, and the V2-V3 region of the 16S rRNA gene was amplified by PCR then sequenced via Illumina Miseq. Oropharyngeal swabs were either dominated by bacteria commonly associated with the rumen or by bacteria commonly associated with the upper aerodigestive tract. Lung microbiota samples did not resemble either the upper aerodigestive tract samples or reagent-only controls. Some rumen-associated bacteria were found in lung fluids, indicating that inhalation of ruminal bacteria does occur. We also identified several bacteria which were significantly more abundant in lung fluids than in the upper aerodigestive tract swabs, the most predominant of which was classified as Staphylococcus equorum. CONCLUSIONS: In contrast to humans, we found that the lung microbiota of lambs is dissimilar to that of the upper aerodigestive tract, and we suggest that this may be related to physiological and anatomical differences between sheep and humans. Understanding the comparative physiology and anatomy underlying differences in lung microbiota between species will provide a foundation upon which to interpret changes associated with disease and/or environment.


Subject(s)
Lung/microbiology , Microbiota , Mouth/microbiology , Oropharynx/microbiology , Respiratory System/microbiology , Sheep/microbiology , Aging , Animals , Bacteria , DNA, Bacterial/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Rumen/microbiology , Sequence Analysis, DNA , Staphylococcus/classification , Staphylococcus/genetics , Staphylococcus/isolation & purification
10.
Appl Environ Microbiol ; 83(12)2017 06 15.
Article in English | MEDLINE | ID: mdl-28389539

ABSTRACT

The lung microbiota is commonly sampled using relatively invasive bronchoscopic procedures. Exhaled breath condensate (EBC) collection potentially offers a less invasive alternative for lung microbiota sampling. We compared lung microbiota samples retrieved by protected specimen brushings (PSB) and exhaled breath condensate collection. We also sought to assess whether aerosolized antibiotic treatment would influence the lung microbiota and whether this change could be detected in EBC. EBC was collected from 6 conscious sheep and then from the same anesthetized sheep during mechanical ventilation. Following the latter EBC collection, PSB samples were collected from separate sites within each sheep lung. On the subsequent day, each sheep was then treated with nebulized colistimethate sodium. Two days after nebulization, EBC and PSB samples were again collected. Bacterial DNA was quantified using 16S rRNA gene quantitative PCR. The V2-V3 region of the 16S rRNA gene was amplified by PCR and sequenced using Illumina MiSeq. Quality control and operational taxonomic unit (OTU) clustering were performed with mothur. The EBC samples contained significantly less bacterial DNA than the PSB samples. The EBC samples from anesthetized animals clustered separately by their bacterial community compositions in comparison to the PSB samples, and 37 bacterial OTUs were identified as differentially abundant between the two sample types. Despite only low concentrations of colistin being detected in bronchoalveolar lavage fluid, PSB samples were found to differ by their bacterial compositions before and after colistimethate sodium treatment. Our findings indicate that microbiota in EBC samples and PSB samples are not equivalent.IMPORTANCE Sampling of the lung microbiota usually necessitates performing bronchoscopic procedures that involve a hospital visit for human participants and the use of trained staff. The inconvenience and perceived discomfort of participating in this kind of research may deter healthy volunteers and may not be a safe option for patients with advanced lung disease. This study set out to evaluate a less invasive method for collecting lung microbiota samples by comparing samples taken via protected specimen brushings (PSB) to those taken via exhaled breath condensate (EBC) collection. We found that there was less bacterial DNA in EBC samples compared with that in PSB samples and that there were differences between the bacterial communities in the two sample types. We conclude that while EBC and PSB samples do not produce equivalent microbiota samples, the study of the EBC microbiota may still be of interest.


Subject(s)
Bacteria/isolation & purification , Lung/microbiology , Microbiota , Animals , Bacteria/classification , Bacteria/genetics , Biodiversity , Lung/physiology , Phylogeny , RNA, Ribosomal, 16S/genetics , Respiration , Sheep
11.
Thorax ; 72(2): 137-147, 2017 02.
Article in English | MEDLINE | ID: mdl-27852956

ABSTRACT

We have recently shown that non-viral gene therapy can stabilise the decline of lung function in patients with cystic fibrosis (CF). However, the effect was modest, and more potent gene transfer agents are still required. Fuson protein (F)/Hemagglutinin/Neuraminidase protein (HN)-pseudotyped lentiviral vectors are more efficient for lung gene transfer than non-viral vectors in preclinical models. In preparation for a first-in-man CF trial using the lentiviral vector, we have undertaken key translational preclinical studies. Regulatory-compliant vectors carrying a range of promoter/enhancer elements were assessed in mice and human air-liquid interface (ALI) cultures to select the lead candidate; cystic fibrosis transmembrane conductance receptor (CFTR) expression and function were assessed in CF models using this lead candidate vector. Toxicity was assessed and 'benchmarked' against the leading non-viral formulation recently used in a Phase IIb clinical trial. Integration site profiles were mapped and transduction efficiency determined to inform clinical trial dose-ranging. The impact of pre-existing and acquired immunity against the vector and vector stability in several clinically relevant delivery devices was assessed. A hybrid promoter hybrid cytosine guanine dinucleotide (CpG)- free CMV enhancer/elongation factor 1 alpha promoter (hCEF) consisting of the elongation factor 1α promoter and the cytomegalovirus enhancer was most efficacious in both murine lungs and human ALI cultures (both at least 2-log orders above background). The efficacy (at least 14% of airway cells transduced), toxicity and integration site profile supports further progression towards clinical trial and pre-existing and acquired immune responses do not interfere with vector efficacy. The lead rSIV.F/HN candidate expresses functional CFTR and the vector retains 90-100% transduction efficiency in clinically relevant delivery devices. The data support the progression of the F/HN-pseudotyped lentiviral vector into a first-in-man CF trial in 2017.


Subject(s)
Cystic Fibrosis/genetics , Cystic Fibrosis/therapy , Genetic Therapy/methods , Lentivirus/genetics , Animals , Gene Expression , Gene Transfer Techniques , Genetic Vectors , Humans , Mice , Peptide Elongation Factor 1 , Promoter Regions, Genetic
12.
Appl Environ Microbiol ; 82(11): 3225-3238, 2016 06 01.
Article in English | MEDLINE | ID: mdl-26994083

ABSTRACT

UNLABELLED: Sequencing technologies have recently facilitated the characterization of bacterial communities present in lungs during health and disease. However, there is currently a dearth of information concerning the variability of such data in health both between and within subjects. This study seeks to examine such variability using healthy adult sheep as our model system. Protected specimen brush samples were collected from three spatially disparate segmental bronchi of six adult sheep (age, 20 months) on three occasions (day 0, 1 month, and 3 months). To further explore the spatial variability of the microbiotas, more-extensive brushing samples (n = 16) and a throat swab were taken from a separate sheep. The V2 and V3 hypervariable regions of the bacterial 16S rRNA genes were amplified and sequenced via Illumina MiSeq. DNA sequences were analyzed using the mothur software package. Quantitative PCR was performed to quantify total bacterial DNA. Some sheep lungs contained dramatically different bacterial communities at different sampling sites, whereas in others, airway microbiotas appeared similar across the lung. In our spatial variability study, we observed clustering related to the depth within the lung from which samples were taken. Lung depth refers to increasing distance from the glottis, progressing in a caudal direction. We conclude that both host influence and local factors have impacts on the composition of the sheep lung microbiota. IMPORTANCE: Until recently, it was assumed that the lungs were a sterile environment which was colonized by microbes only during disease. However, recent studies using sequencing technologies have found that there is a small population of bacteria which exists in the lung during health, referred to as the "lung microbiota." In this study, we characterize the variability of the lung microbiotas of healthy sheep. Sheep not only are economically important animals but also are often used as large animal models of human respiratory disease. We conclude that, while host influence does play a role in dictating the types of microbes which colonize the airways, it is clear that local factors also play an important role in this regard. Understanding the nature and influence of these factors will be key to understanding the variability in, and functional relevance of, the lung microbiota.


Subject(s)
Bacteria/classification , Bacteria/isolation & purification , Biota , Bronchi/microbiology , Animals , Bacteria/genetics , Bacterial Load , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Pharynx/microbiology , Phylogeny , RNA, Ribosomal, 16S/genetics , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA , Sheep
13.
PLoS One ; 10(11): e0142097, 2015.
Article in English | MEDLINE | ID: mdl-26544950

ABSTRACT

BACKGROUND: Exacerbations associated with chronic lung infection with Pseudomonas aeruginosa are a major contributor to morbidity, mortality and premature death in cystic fibrosis. Such exacerbations are treated with antibiotics, which generally lead to an improvement in lung function and reduced sputum P. aeruginosa density. This potentially suggests a role for the latter in the pathogenesis of exacerbations. However, other data suggesting that changes in P. aeruginosa sputum culture status may not reliably predict an improvement in clinical status, and data indicating no significant changes in either total bacterial counts or in P. aeruginosa numbers in sputum samples collected prior to pulmonary exacerbation sheds doubt on this assumption. We used our recently developed lung segmental model of chronic Pseudomonas infection in sheep to investigate the lung microbiota changes associated with chronic P. aeruginosa lung infection and the impact of systemic therapy with colistimethate sodium (CMS). METHODOLOGY/PRINCIPAL FINDINGS: We collected protected specimen brush (PSB) samples from sheep (n = 8) both prior to and 14 days after establishment of chronic local lung infection with P aeruginosa. Samples were taken from both directly infected lung segments (direct) and segments spatially remote to such sites (remote). Four sheep were treated with daily intravenous injections of CMS between days 7 and 14, and four were treated with a placebo. Necropsy examination at d14 confirmed the presence of chronic local lung infection and lung pathology in every direct lung segment. The predominant orders in lung microbiota communities before infection were Bacillales, Actinomycetales and Clostridiales. While lung microbiota samples were more likely to share similarities with other samples derived from the same lung, considerable within- and between-animal heterogeneity could be appreciated. Pseudomonadales joined the aforementioned list of predominant orders in lung microbiota communities after infection. Whilst treatment with CMS appeared to have little impact on microbial community composition after infection, or the change undergone by communities in reaching that state, when Gram negative organisms (excluding Pseudomonadales) were considered together as a group there was a significant decrease in their relative proportion that was only observed in the sheep treated with CMS. With only one exception the reduction was seen in both direct and remote lung segments. This reduction, coupled with generally increasing or stable levels of Pseudomonadales, meant that the proportion of the latter relative to total Gram negative bacteria increased in all bar one direct and one remote lung segment. CONCLUSIONS/SIGNIFICANCE: The proportional increase in Pseudomonadales relative to other Gram negative bacteria in the lungs of sheep treated with systemic CMS highlights the potential for such therapies to inadvertently select or create a niche for bacteria seeding from a persistent source of chronic infection.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Colistin/analogs & derivatives , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/microbiology , Animals , Bacterial Load , Bronchoalveolar Lavage Fluid/microbiology , Chronic Disease , Colistin/administration & dosage , Disease Models, Animal , Female , Injections, Intravenous , Lung/microbiology , Lung/pathology , Male , Microbiota , Pseudomonas Infections/pathology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/isolation & purification , Respiratory Tract Infections/pathology , Sheep, Domestic
14.
Lancet Respir Med ; 3(9): 684-691, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26149841

ABSTRACT

BACKGROUND: Lung delivery of plasmid DNA encoding the CFTR gene complexed with a cationic liposome is a potential treatment option for patients with cystic fibrosis. We aimed to assess the efficacy of non-viral CFTR gene therapy in patients with cystic fibrosis. METHODS: We did this randomised, double-blind, placebo-controlled, phase 2b trial in two cystic fibrosis centres with patients recruited from 18 sites in the UK. Patients (aged ≥12 years) with a forced expiratory volume in 1 s (FEV1) of 50-90% predicted and any combination of CFTR mutations, were randomly assigned, via a computer-based randomisation system, to receive 5 mL of either nebulised pGM169/GL67A gene-liposome complex or 0.9% saline (placebo) every 28 days (plus or minus 5 days) for 1 year. Randomisation was stratified by % predicted FEV1 (<70 vs ≥70%), age (<18 vs ≥18 years), inclusion in the mechanistic substudy, and dosing site (London or Edinburgh). Participants and investigators were masked to treatment allocation. The primary endpoint was the relative change in % predicted FEV1. The primary analysis was per protocol. This trial is registered with ClinicalTrials.gov, number NCT01621867. FINDINGS: Between June 12, 2012, and June 24, 2013, we randomly assigned 140 patients to receive placebo (n=62) or pGM169/GL67A (n=78), of whom 116 (83%) patients comprised the per-protocol population. We noted a significant, albeit modest, treatment effect in the pGM169/GL67A group versus placebo at 12 months' follow-up (3.7%, 95% CI 0.1-7.3; p=0.046). This outcome was associated with a stabilisation of lung function in the pGM169/GL67A group compared with a decline in the placebo group. We recorded no significant difference in treatment-attributable adverse events between groups. INTERPRETATION: Monthly application of the pGM169/GL67A gene therapy formulation was associated with a significant, albeit modest, benefit in FEV1 compared with placebo at 1 year, indicating a stabilisation of lung function in the treatment group. Further improvements in efficacy and consistency of response to the current formulation are needed before gene therapy is suitable for clinical care; however, our findings should also encourage the rapid introduction of more potent gene transfer vectors into early phase trials. FUNDING: Medical Research Council/National Institute for Health Research Efficacy and Mechanism Evaluation Programme.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/administration & dosage , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/drug therapy , Genetic Therapy/methods , Plasmids/administration & dosage , Administration, Inhalation , Adolescent , Adult , Child , Cystic Fibrosis/genetics , Cystic Fibrosis/physiopathology , Double-Blind Method , Female , Forced Expiratory Volume/drug effects , Humans , Liposomes , Male , Mutation , Nebulizers and Vaporizers , United Kingdom , Young Adult
15.
Vet Res ; 46: 16, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25828258

ABSTRACT

While toxins from aquatic cyanobacteria are a well-recognised cause of disease in birds and animals, exposure of grazing livestock to terrestrial cyanobacteria has not been described. This study identified terrestrial cyanobacteria, predominantly Phormidium spp., in the biofilm of plants from most livestock fields investigated. Lower numbers of other cyanobacteria, microalgae and fungi were present on many plants. Cyanobacterial 16S rDNA, predominantly from Phormidium spp., was detected in all samples tested, including 6 plant washings, 1 soil sample and ileal contents from 2 grazing horses. Further work was performed to test the hypothesis that ingestion of cyanotoxins contributes to the pathogenesis of some currently unexplained diseases of grazing horses, including equine grass sickness (EGS), equine motor neuron disease (EMND) and hepatopathy. Phormidium population density was significantly higher on EGS fields than on control fields. The cyanobacterial neurotoxic amino acid 2,4-diaminobutyric acid (DAB) was detected in plant washings from EGS fields, but worst case scenario estimations suggested the dose would be insufficient to cause disease. Neither DAB nor the cyanobacterial neurotoxins ß-N-methylamino-L-alanine and N-(2-aminoethyl) glycine were detected in neural tissue from 6 EGS horses, 2 EMND horses and 7 control horses. Phormidium was present in low numbers on plants where horses had unexplained hepatopathy. This study did not yield evidence linking known cyanotoxins with disease in grazing horses. However, further study is warranted to identify and quantify toxins produced by cyanobacteria on livestock fields, and determine whether, under appropriate conditions, known or unknown cyanotoxins contribute to currently unexplained diseases in grazing livestock.


Subject(s)
Biofilms/growth & development , Cyanobacteria/physiology , Gastrointestinal Contents/microbiology , Gram-Negative Bacterial Infections/veterinary , Horse Diseases/microbiology , Amino Acids, Diamino/analysis , Animal Husbandry , Animals , Cyanobacteria/genetics , Cyanobacteria/isolation & purification , Cyanobacteria Toxins , DNA, Bacterial/genetics , England , France , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/pathology , Horse Diseases/pathology , Horses , Liver Diseases/microbiology , Liver Diseases/pathology , Liver Diseases/veterinary , Livestock , Motor Neuron Disease/microbiology , Motor Neuron Disease/pathology , Motor Neuron Disease/veterinary , Neurotoxins/analysis , Plants/microbiology , Population Density , RNA, Ribosomal, 16S/genetics , Scotland
16.
Cell Reprogram ; 17(1): 19-27, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25513856

ABSTRACT

Induced pluripotent stem cells (iPSCs) share similar characteristics of indefinite in vitro growth with embryonic stem cells (ESCs) and may therefore serve as a useful tool for the targeted genetic modification of farm animals via nuclear transfer (NT). Derivation of stable ESC lines from farm animals has not been possible, therefore, it is important to determine whether iPSCs can be used as substitutes for ESCs in generating genetically modified cloned farm animals. We generated ovine iPSCs by conventional retroviral transduction using the four Yamanaka factors. These cells were basic fibroblast growth factor (bFGF)- and activin A-dependent, showed persistent expression of the transgenes, acquired chromosomal abnormalities, and failed to activate endogenous NANOG. Nonetheless, iPSCs could differentiate into the three somatic germ layers in vitro. Because cloning of farm animals is best achieved with diploid cells (G1/G0), we synchronized the iPSCs in G1 prior to NT. Despite the cell cycle synchronization, preimplantation development of iPSC-NT embryos was lower than with somatic cells (2% vs. 10% blastocysts, p<0.01). Furthermore, analysis of the blastocysts produced demonstrated persistent expression of the transgenes, aberrant expression of endogenous SOX2, and a failure to activate NANOG consistently. In contrast, gene expression in blastocysts produced with the parental fetal fibroblasts was similar to those generated by in vitro fertilization. Taken together, our data suggest that the persistent expression of the exogenous factors and the acquisition of chromosomal abnormalities are incompatible with normal development of NT embryos produced with iPSCs.


Subject(s)
Cellular Reprogramming , Embryonic Stem Cells/cytology , Fibroblasts/cytology , Induced Pluripotent Stem Cells/cytology , Nuclear Transfer Techniques/veterinary , Activins/pharmacology , Animals , Blastocyst/cytology , Cell Differentiation , Cells, Cultured , Cloning, Organism , Embryo Culture Techniques , Gene Expression , Homeodomain Proteins/metabolism , SOXB1 Transcription Factors/metabolism , Sheep, Domestic , Transgenes
17.
Hum Gene Ther Clin Dev ; 25(2): 97-107, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24865497

ABSTRACT

Abstract Lung gene therapy is being evaluated for a range of acute and chronic diseases, including cystic fibrosis (CF). As these therapies approach clinical realization, it is becoming increasingly clear that the ability to efficiently deliver gene transfer agents (GTAs) to target cell populations within the lung may prove just as critical as the gene therapy formulation itself in terms of generating positive clinical outcomes. Key to the success of any aerosol gene therapy is the interaction between the GTA and nebulization device. We evaluated the effects of aerosolization on our preferred formulation, plasmid DNA (pDNA) complexed with the cationic liposome GL67A (pDNA/GL67A) using commercially available nebulizer devices. The relatively high viscosity (6.3±0.1 cP) and particulate nature of pDNA/GL67A formulations hindered stable aerosol generation in ultrasonic and vibrating mesh nebulizers but was not problematic in the jet nebulizers tested. Aerosol size characteristics varied significantly between devices, but the AeroEclipse II nebulizer operating at 50 psi generated stable pDNA/GL67A aerosols suitable for delivery to the CF lung (mass median aerodynamic diameter 3.4±0.1 µm). Importantly, biological function of pDNA/GL67A formulations was retained after nebulization, and although aerosol delivery rate was lower than that of other devices (0.17±0.01 ml/min), the breath-actuated AeroEclipse II nebulizer generated aerosol only during the inspiratory phase and as such was more efficient than other devices with 83±3% of generated aerosol available for patient inhalation. On the basis of these results, we have selected the AeroEclipse II nebulizer for the delivery of pDNA/GL67A formulations to the lungs of CF patients as part of phase IIa/b clinical studies.


Subject(s)
Aerosols/chemistry , Cystic Fibrosis/therapy , DNA/metabolism , Liposomes/chemistry , Lung/metabolism , Administration, Inhalation , Animals , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , DNA/chemistry , Female , Genetic Therapy , Mice , Mice, Inbred BALB C , Nebulizers and Vaporizers , Plasmids/genetics , Plasmids/metabolism
18.
Biomaterials ; 34(38): 10267-77, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24090839

ABSTRACT

Clinically effective gene therapy for Cystic Fibrosis has been a goal for over 20 years. A plasmid vector (pGM169) that generates persistent expression and reduced host inflammatory responses in mice has raised prospects for translation to the clinic. The UK CF Gene Therapy Consortium is currently evaluating long-term repeated delivery of pGM169 complexed with the cationic lipid GL67A in a large Multidose Trial. This regulatory-compliant evaluation of aerosol administration of nine doses of pGM169/GL67A at monthly intervals, to the sheep lung, was performed in preparation for the Multidose Trial. All sheep tolerated treatment well with no adverse effects on haematology, serum chemistry, lung function or histopathology. Acute responses were observed in relation to bronchoalveolar cellularity comprising increased neutrophils and macrophage numbers 1 day post-delivery but these increases were transient and returned to baseline. Importantly there was no cumulative inflammatory effect or lung remodelling with successive doses. Molecular analysis confirmed delivery of pGM169 DNA to the airways and pGM169-specific mRNA was detected in bronchial brushing samples at day 1 following doses 1, 5 and 9. In conclusion, nine doses of pGM169/GL67A were well tolerated with no significant evidence of toxicity that would preclude adoption of a similar strategy in CF patients.


Subject(s)
Cystic Fibrosis/genetics , Lipids/chemistry , Lung/metabolism , Aerosols , Animals , Epithelium/metabolism , Female , Gene Transfer Techniques , Male , Sheep
19.
PLoS One ; 8(7): e67677, 2013.
Article in English | MEDLINE | ID: mdl-23874438

ABSTRACT

BACKGROUND: Chronic lung infection with Pseudomonas aeruginosa is a major contributor to morbidity, mortality and premature death in cystic fibrosis. A new paradigm for managing such infections is needed, as are relevant and translatable animal models to identify and test concepts. We sought to improve on limitations associated with existing models of infection in small animals through developing a lung segmental model of chronic Pseudomonas infection in sheep. METHODOLOGY/PRINCIPAL FINDINGS: Using local lung instillation of P. aeruginosa suspended in agar beads we were able to demonstrate that such infection led to the development of a suppurative, necrotising and pyogranulomatous pneumonia centred on the instilled beads. No overt evidence of organ or systemic compromise was apparent in any animal during the course of infection. Infection persisted in the lungs of individual animals for as long as 66 days after initial instillation. Quantitative microbiology applied to bronchoalveolar lavage fluid derived from infected segments proved an insensitive index of the presence of significant infection in lung tissue (>10(4) cfu/g). CONCLUSIONS/SIGNIFICANCE: The agar bead model of chronic P. aeruginosa lung infection in sheep is a relevant platform to investigate both the pathobiology of such infections as well as novel approaches to their diagnosis and therapy. Particular ethical benefits relate to the model in terms of refining existing approaches by compromising a smaller proportion of the lung with infection and facilitating longitudinal assessment by bronchoscopy, and also potentially reducing animal numbers through facilitating within-animal comparisons of differential therapeutic approaches.


Subject(s)
Pneumonia/etiology , Pseudomonas Infections/etiology , Pseudomonas aeruginosa , Animals , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/microbiology , Cystic Fibrosis/complications , Disease Models, Animal , Pneumonia/microbiology , Pneumonia/pathology , Pseudomonas Infections/microbiology , Pseudomonas Infections/pathology , Sheep
20.
PLoS One ; 8(4): e58930, 2013.
Article in English | MEDLINE | ID: mdl-23593124

ABSTRACT

BACKGROUND: Understanding the way in which the airway heals in response to injury is fundamental to dissecting the mechanisms underlying airway disease pathology. As only limited data is available in relation to the in vivo characterisation of the molecular features of repair in the airway we sought to characterise the dynamic changes in gene expression that are associated with the early response to physical injury in the airway wall. METHODOLOGY/PRINCIPAL FINDINGS: We profiled gene expression changes in the airway wall using a large animal model of physical injury comprising bronchial brush biopsy in anaesthetised sheep. The experimental design featured sequential studies in the same animals over the course of a week and yielded data relating to the response at 6 hours, and 1, 3 and 7 days after injury. Notable features of the transcriptional response included the early and sustained preponderance of down-regulated genes associated with angiogenesis and immune cell activation, selection and differentiation. Later features of the response included the up-regulation of cell cycle genes at d1 and d3, and the latter pronounced up-regulation of extracellular matrix-related genes at d3 and d7. CONCLUSIONS/SIGNIFICANCE: It is possible to follow the airway wall response to physical injury in the same animal over the course of time. Transcriptional changes featured coordinate expression of functionally related genes in a reproducible manner both within and between animals. This characterisation will provide a foundation against which to assess the perturbations that accompany airway disease pathologies of comparative relevance.


Subject(s)
Gene Expression Regulation , Respiratory System/injuries , Respiratory System/metabolism , Wound Healing/genetics , Animals , Cluster Analysis , Computational Biology , Gene Expression Profiling , Humans , Microvilli/genetics , Molecular Sequence Annotation , Respiratory Mucosa/cytology , Respiratory Mucosa/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...