Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Stimul ; 16(3): 830-839, 2023.
Article in English | MEDLINE | ID: mdl-37187457

ABSTRACT

BACKGROUND: The communication through coherence model posits that brain rhythms are synchronized across different frequency bands and that effective connectivity strength between interacting regions depends on their phase relation. Evidence to support the model comes mostly from electrophysiological recordings in animals while evidence from human data is limited. METHODS: Here, an fMRI-EEG-TMS (fET) instrument capable of acquiring simultaneous fMRI and EEG during noninvasive single pulse TMS applied to dorsolateral prefrontal cortex (DLPFC) was used to test whether prefrontal EEG alpha phase moderates TMS-evoked top-down influences on subgenual, rostral and dorsal anterior cingulate cortex (ACC). Six runs (276 total trials) were acquired in each participant. Phase at each TMS pulse was determined post-hoc using single-trial sorting. Results were examined in two independent datasets: healthy volunteers (HV) (n = 11) and patients with major depressive disorder (MDD) (n = 17) collected as part of an ongoing clinical trial. RESULTS: In both groups, TMS-evoked functional connectivity between DLPFC and subgenual ACC (sgACC) depended on the EEG alpha phase. TMS-evoked DLPFC to sgACC fMRI-derived effective connectivity (EC) was modulated by EEG alpha phase in healthy volunteers, but not in the MDD patients. Top-down EC was inhibitory for TMS pulses during the upward slope of the alpha wave relative to TMS timed to the downward slope of the alpha wave. Prefrontal EEG alpha phase dependent effects on TMS-evoked fMRI BOLD activation of the rostral anterior cingulate cortex were detected in the MDD patient group, but not in the healthy volunteer group. DISCUSSION: Results demonstrate that TMS-evoked top-down influences vary as a function of the prefrontal alpha rhythm, and suggest potential clinical applications whereby TMS is synchronized to the brain's internal rhythms in order to more efficiently engage deep therapeutic targets.


Subject(s)
Depressive Disorder, Major , Transcranial Magnetic Stimulation , Animals , Humans , Brain , Alpha Rhythm , Dorsolateral Prefrontal Cortex , Prefrontal Cortex , Electroencephalography , Magnetic Resonance Imaging
2.
Brain Stimul ; 15(2): 458-471, 2022.
Article in English | MEDLINE | ID: mdl-35231608

ABSTRACT

BACKGROUND: Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation modality that can treat depression, obsessive-compulsive disorder, or help smoking cessation. Research suggests that timing the delivery of TMS relative to an endogenous brain state may affect efficacy and short-term brain dynamics. OBJECTIVE: To investigate whether, for a multi-week daily treatment of repetitive TMS (rTMS), there is an effect on brain dynamics that depends on the timing of the TMS relative to individuals' prefrontal EEG quasi-alpha rhythm (between 6 and 13 Hz). METHOD: We developed a novel closed-loop system that delivers personalized EEG-triggered rTMS to patients undergoing treatment for major depressive disorder. In a double blind study, patients received daily treatments of rTMS over a period of six weeks and were randomly assigned to either a synchronized or unsynchronized treatment group, where synchronization of rTMS was to their prefrontal EEG quasi-alpha rhythm. RESULTS: When rTMS is applied over the dorsal lateral prefrontal cortex (DLPFC) and synchronized to the patient's prefrontal quasi-alpha rhythm, patients develop strong phase entrainment over a period of weeks, both over the stimulation site as well as in a subset of areas distal to the stimulation site. In addition, at the end of the course of treatment, this group's entrainment phase shifts to be closer to the phase that optimally engages the distal target, namely the anterior cingulate cortex (ACC). These entrainment effects are not observed in the group that is given rTMS without initial EEG synchronization of each TMS train. CONCLUSIONS: The entrainment effects build over the course of days/weeks, suggesting that these effects engage neuroplastic changes which may have clinical consequences in depression or other diseases.


Subject(s)
Depressive Disorder, Major , Transcranial Magnetic Stimulation , Adult , Alpha Rhythm , Brain , Depressive Disorder, Major/therapy , Humans , Prefrontal Cortex/physiology , Transcranial Magnetic Stimulation/adverse effects , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...